6052
H. Egami et al. / Tetrahedron Letters 46 (2005) 6049–6052
Kozhevnikov, I. V. J. Mol. Catal. A 2002, 180, 77–84;
(f) Lorber, C. Y.; Smidt, S. P.; Osborn, J. A. Eur. J. Inorg.
Chem. 2000, 655–658; (g) Ebitani, K.; Fujie, Y.; Kaneda,
K. Langmuir 1999, 15, 3557–3562; (h) Hinzen, B.; Lenz,
R.; Ley, S. V. Synthesis 1998, 977–979; (i) Kaneda, K.;
Fujie, Y.; Ebitani, K. Tetrahedron Lett. 1997, 38, 9023–
9026; (j) Liu, X.; Qiu, A.; Sawyer, D. T. J. Am. Chem. Soc.
1993, 115, 3239–3243; (k) Bilgrien, C.; Davis, S.; Drago,
R. J. Am. Chem. Soc. 1997, 109, 3786–3787; (l) Musawir,
M.; Davey, P. N.; Kelly, G.; Kozhevnikov, I. V. Chem.
Commun. 2003, 1414–1415; (m) Matsumoto, M.; Ito, S.
J. Chem. Soc., Chem. Commun. 1981, 907–908; (n)
Matsumoto, M.; Watanabe, N. J. Org. Chem. 1984, 49,
3436–3437; (o) Uozumi, Y.; Nakano, R. Angew. Chem.,
Int. Ed. 2003, 42, 194–197; (p) Gamez, P.; Arends, I. W. C.
E.; Reedijk, J.; Sheldon, R. A. Chem. Commun. 2003,
2414–2415.
oxidation of alcohols using (ON)Ru(salen) complexes 1
and 4 as catalyst, in which the intramolecular HAT step
is responsible for chemoselection by the catalysts. Kinet-
ics and kinetic isotope effects observed in the oxidations
with complexes (1 and 4) and with complexes (5 and 6)
were found to be similar, though the influence of the
oxygen pressure to the rate was markedly reduced in
the oxidation using 1 or 4, as compared with the oxida-
tion using 5 or 6. The reason for the reduced influence of
the oxygen pressure is unclear.
References and notes
1. (a) Ley, S. V.; Madin, A. In Comprehensive Organic
Synthesis; Trost, B. M., Fleming, I., Ley, S. V., Eds.;
Pergamon Press: Oxford, 1991; Vol. 7, pp 251–289; (b)
Lee, T. V. In Comprehensive Organic Synthesis; Trost, B.
M., Fleming, I., Ley, S. V., Eds.; Pergamon Press: Oxford,
1991; Vol. 7, pp 291–303; (c) Procter, G. In Comprehensive
Organic Synthesis; Trost, B. M., Fleming, I., Ley, S. V.,
Eds.; Pergamon Press: Oxford, 1991; Vol. 7, pp 305–327.
2. For non-aerobic highly chemoselective oxidation of
primary alcohols, (a) Tomioka, H.; Takai, K.; Oshima,
K.; Nozaki, H. Tetrahedron Lett. 1981, 22, 1605–1608; (b)
Saint-Arnan, E.; Menage, S.; Pierre, J.-L.; Defrancq, E.;
Gellon, G. New J. Chem. 1998, 393; (c) Luca, L. D.;
Giacomelli, G.; Porcheddu, A. Org. Lett. 2001, 3, 3041; (d)
Matsuo, J.; Iida, D.; Yamanaka, H.; Mukaiyama, T.
Tetrahedron 2003, 59, 6739.
5. (a) Miyata, A.; Murakami, M.; Irie, R.; Katsuki, T.
Tetrahedron Lett. 2001, 42, 7067–7070; (b) Miyata, A.;
Furukawa, M.; Irie, R.; Katsuki, T. Tetrahedron Lett.
2002, 43, 3481–3484.
6. (a) Egami, H.; Shimizu, H.; Katsuki, T. Tetrahedron Lett.
2005, 46, 783–786; (b) Gaquere, A.; Liang, S.; Hus, F.-L.;
Bu, X. R. Tetrahedron: Asymmetry 2002, 13, 2089–2093.
7. (a) Shimizu, H.; Nakata, K.; Katsuki, T. Chem. Lett. 2002,
1080–1081; (b) Shimizu, H.; Katsuki, T. Chem. Lett. 2003,
32, 480–481; (c) Shimizu, H.; Onitsuka, S.; Egami, H.;
Katsuki, T. J. Am. Chem. Soc. 2005, 127, 5396–5413.
8. For determination of the rate raws, see Ref. 7c: irradiation
of a (nitrosyl)Ru(salen) complex in air gives the corre-
sponding nitrosyl-free Ru(salen) complexes at the early
stage of the oxidation under the conditions.
9. (a) Minasian, S. G.; Whittaker, M. M.; Whittaker, J. W.
Biochemistry 2004, 43, 13683–13693; (b) Pratt, R. C.;
Stack, T. D. P. J. Am. Chem. Soc. 2003, 125, 8716–8717;
(c) Whittaker, M. M.; Whittaker, J. W. Biochemistry 2001,
40, 7140–7148; (d) Wang, Y.; DuBois, J. L.; Hedman, B.;
Hodgson, K. O.; Stack, T. D. P. Science 1998, 279, 537–
540; (e) Dijksman, A.; Arends, I. W. C. E.; Sheldon, R. A.
Org. Biomol. Chem. 2003, 1, 3232–3237.
3. (a) Sheldon, R. A.; Arends, I. W. C. E. In Advances in
Catalytic Activation of Dioxygen by Metal Complexes;
Simandi, L. I., Ed.; Kluwer Academic: Dordrecht, 2003, p
123; (b) Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. J.
´
Org. Chem. 1999, 64, 6750–6755; (c) Marko, I.-E.; Giles,
P.-R.; Tsukazaki, M.; Brown, S.-M.; Urch, C.-J. Science
1996, 274, 2044–2046; (d) Stolz, B. M. Chem. Lett. 2004,
33, 362–367; (e) Irie, R.; Katsuki, T. Chem. Rec. 2004, 4,
96–109.
10. A similar mechanism including intramolecular hydrogen
atom transfer has been proposed for Cu(II)-Schiff base-
catalyzed aerobic oxidation of alcohols (Ref. 9d).
11. A reviewer of this manuscript pointed out that the present
KIEcompet/KIEindep value may be too large, if only HAT
contributes to the TS of the oxidation. This comment led
us to an idea that the product might behave as a catalytic
poison. The authors are grateful to him for this comment.
4. (a) Hanyu, A.; Takezawa, E.; Sakaguchi, S.; Ishii, Y.
Tetrahedron Lett. 1998, 39, 5557–5560; (b) Semmelhack,
M. F.; Schmid, C. R.; Cortes, D. A.; Chou, C. S. J. Am.
Chem. Soc. 1984, 106, 3374–3376; (c) Gamez, P.; Arends,
I. W. C. E.; Reedijk, J.; Sheldon, R. A. Chem. Commun.
2003, 2414–2425; (d) Choi, K.-M.; Akita, T.; Mizugaki,
T.; Ebitani, K.; Kaneda, K. New J. Chem. 2003, 27, 324–
328; (e) Hasan, M.; Musawir, M.; Davey, P. N.;