NATurE CHEMisTry
Articles
16. Lail, M., Arrowood, B. N. & Gunnoe, T. B. Addition of arenes to ethylene and
propene catalyzed by ruthenium. J. Am. Chem. Soc. 125, 7506–7507 (2003).
17. Lail, M. et al. Experimental and computational studies of ruthenium(II)-
catalyzed addition of arene C−H bonds to olefns. Organometallics 23,
5007–5020 (2004).
18. McKeown, B. A., Prince, B. M., Ramiro, Z., Gunnoe, T. B. & Cundari, T. R.
PtII-catalyzed hydrophenylation of α-olefns: variation of linear/branched
products as a function of ligand donor ability. ACS Catal. 4, 1607–1615 (2014).
19. Luedtke, A. T. & Goldberg, K. I. Intermolecular hydroarylation of unactivated
olefns catalyzed by homogeneous platinum complexes. Angew. Chem. Int. Ed.
47, 7694–7696 (2008).
20. Clement, M. L., Grice, K. A., Luedtke, A. T., Kaminsky, W. & Goldberg, K. I.
Platinum(II) olefn hydroarylation catalysts: tuning selectivity for the anti‐
Markovnikov product. Chem. Eur. J. 20, 17287–17291 (2014).
21. Webster-Gardiner, M. S. et al. Catalytic synthesis of “super” linear alkenyl
arenes using an easily prepared Rh(I) catalyst. J. Am. Chem. Soc. 139,
5474–5480 (2017).
22. Chen, J. et al. Catalytic synthesis of superlinear alkenyl arenes using a Rh(I)
catalyst supported by a “capping arene” ligand: access to aerobic catalysis. J.
Am. Chem. Soc. 140, 17007–17018 (2018).
23. Oxgaard, J. & Goddard, W. A. Mechanism of Ru(II)-catalyzed olefn insertion
and C−H activation from quantum chemical studies. J. Am. Chem. Soc. 126,
442–443 (2004).
24. Oxgaard, J., Periana, R. A. & Goddard, W. A. Mechanistic analysis of
hydroarylation catalysts. J. Am. Chem. Soc. 126, 11658–11665 (2004).
25. Suslick, B. A., Liberman-Martin, A. L., Wambach, T. C. & Tilley, T. D. Olefn
hydroarylation catalyzed by (pyridyl-indolate)Pt(II) complexes: catalytic
efciencies and mechanistic aspects. ACS Catal. 7, 4313–4322 (2017).
26. Mann, G., Shelby, Q., Roy, A. H. & Hartwig, J. F. Electronic and steric efects
on the reductive elimination of diaryl ethers from palladium(II).
Organometallics 22, 2775–2789 (2003).
27. Foley, N. A. et al. Comparative reactivity of TpRu(L)(NCMe)Ph (L = CO or
PMe3): impact of ancillary ligand L on activation of carbon−hydrogen bonds
including catalytic hydroarylation and hydrovinylation/oligomerization of
ethylene. J. Am. Chem. Soc. 129, 6765–6781 (2007).
28. Foley, N. A., Ke, Z., Gunnoe, T. B., Cundari, T. R. & Petersen, J. L. Aromatic
C−H activation and catalytic hydrophenylation of ethylene by
TpRu{P(OCH2)3CEt}(NCMe)Ph. Organometallics 27, 3007–3017 (2008).
29. Foley, N. A., Lee, J. P., Ke, Z., Gunnoe, T. B. & Cundari, T. R. Ru(II) catalysts
supported by hydridotris(pyrazolyl)borate for the hydroarylation of olefns:
reaction scope, mechanistic studies, and guides for the development of
improved catalysts. Acc. Chem. Res. 42, 585–597 (2009).
30. Joslin, E. E. et al. Catalytic hydroarylation of ethylene using TpRu(L)(NCMe)
Ph (L = 2,6,7-trioxa-1-phosphabicyclo[2,2,1]heptane): comparison to
TpRu(L′)(NCMe)Ph systems (L′ = CO, PMe3, P(pyr)3, or P(OCH2)3CEt).
Organometallics 31, 6851–6860 (2012).
31. Burgess, S. A. et al. Hydrophenylation of ethylene using a cationic Ru(ii)
catalyst: comparison to a neutral Ru(ii) catalyst. Chem. Sci. 5, 4355–4366 (2014).
32. Malinoski, J. M. & Brookhart, M. Polymerization and oligomerization of
ethylene by cationic nickel(II) and palladium(II) complexes containing bidentate
phenacyldiarylphosphine ligands. Organometallics 22, 5324–5335 (2003).
33. Bair, J. S. et al. Linear-selective hydroarylation of unactivated terminal and
internal olefns with trifuoromethyl-substituted arenes. J. Am. Chem. Soc.
136, 13098–13101 (2014).
35. Guihaumé, J., Halbert, S., Eisenstein, O. & Perutz, R. N. Hydrofuoroarylation of
alkynes with Ni catalysts. C–H activation via ligand-to-ligand hydrogen transfer,
an alternative to oxidative addition. Organometallics 31, 1300–1314 (2012).
36. Hoshimoto, Y., Hayashi, Y., Suzuki, H., Ohashi, M. & Ogoshi, S. One-pot,
6
single-step, and gram-scale synthesis of nononuclear [(η -arene)Ni(N-
heterocyclic carbene)] complexes: useful precursors of the Ni0–NHC unit.
Organometallics 33, 1276–1282 (2014).
37. Berthon-Gelloz, G. et al. IPr* an easily accessible highly hindered
N-heterocyclic carbene. Dalton Trans. 39, 1444–1446 (2010).
38. Meiries, S., Speck, K., Cordes, D. B., Slawin, A. M. Z. & Nolan, S. P.
[Pd(IPr*OMe)(acac)Cl]: tuning the N-heterocyclic carbene in catalytic C–N
bond formation. Organometallics 32, 330–339 (2013).
39. Okumura, S. et al. para-Selective alkylation of benzamides and aromatic
ketones by cooperative nickel/aluminum catalysis. J. Am. Chem. Soc. 138,
14699–14704 (2016).
40. Horn, P. R., Mao, Y. & Head-Gordon, M. Probing non-covalent interactions
with a second generation energy decomposition analysis using absolutely
localized molecular orbitals. Phys. Chem. Chem. Phys. 18, 23067–23079 (2016).
41. Saper, N. I. & Hartwig, J. F. Mechanistic investigations of the hydrogenolysis
of diaryl ethers catalyzed by nickel complexes of N-heterocyclic carbene
ligands. J. Am. Chem. Soc. 139, 17667–17676 (2017).
42. Clavier, H. & Nolan, S. P. Percent buried volume for phosphine and
N-heterocyclic carbene ligands: steric properties in organometallic chemistry.
Chem. Commun. 46, 841–861 (2010).
43. Hillier, A. C. et al. A combined experimental and theoretical study
examining the binding of N-heterocyclic carbenes (NHC) to the Cp*RuCl
5
(Cp* = η -C5Me5) moiety: insight into stereoelectronic diferences between
unsaturated and saturated NHC ligands. Organometallics 22, 4322–4326
(2003).
44. Falivene, L. et al. SambVca 2. A web tool for analyzing catalytic pockets with
topographic steric maps. Organometallics 35, 2286–2293 (2016).
45. Dorta, R. et al. Steric and electronic properties of N-heterocyclic carbenes
(NHC): a detailed study on their interaction with Ni(CO)4. J. Am. Chem. Soc.
127, 2485–2496 (2005).
46. Matsumoto, T., Periana, R. A., Taube, D. J. & Yoshida, H. Regioselective
hydrophenylation of olefns catalyzed by an Ir(III) complex. J. Mol. Catal. A
180, 1–18 (2002).
47. Simmons, E. M. & Hartwig, J. F. On the interpretation of deuterium kinetic
isotope efects in C–H bond functionalizations by transition-metal complexes.
Angew. Chem. Int. Ed. 51, 3066–3072 (2012).
48. Tang, S., Eisenstein, O., Nakao, Y. & Sakaki, S. Aromatic C–H σ-bond
activation by Ni0, Pd0, and Pt0 alkene complexes: concerted oxidative addition
to metal vs ligand-to-ligand H transfer mechanism. Organometallics 36,
2761–2771 (2017).
49. Bickelhaupt, F. M. & Houk, K. N. Analyzing reaction rates with the
distortion/interaction-activation strain model. Angew. Chem. Int. Ed. 56,
10070–10086 (2017).
50. Hartwig, J. F. in Organotransition Metal Chemistry: From Bonding to Catalysis
Ch. 8 (Univ. Science Books, 2010).
51. Johnson, E. R. et al. Revealing noncovalent interactions. J. Am. Chem. Soc.
132, 6498–6506 (2010).
52. Contreras-García, J. et al. NCIPLOT: a program for plotting noncovalent
interaction regions. J. Chem. Teory Comput. 7, 625–632 (2011).
34. Schramm, Y., Takeuchi, M., Semba, K., Nakao, Y. & Hartwig, J. F. Anti-
Markovnikov hydroheteroarylation of unactivated alkenes with indoles,
pyrroles, benzofurans, and furans catalyzed by a nickel–N-heterocyclic
carbene cystem. J. Am. Chem. Soc. 137, 12215–12218 (2015).
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature Limited 2020