156
Y. Nakagawa, K. Tomishige / Catalysis Communications 12 (2010) 154–156
centrifugation gave 39% conversion of HMF and 21% selectivity to BHTF
in the same conditions in Fig. 3) probably because of the leaching of Ni
during the activation of oxidized particle surface with an acid. Indeed,
ICP-AES analysis showed that 16% of Ni was leached from Ni–Pd/SiO2
during the reaction of entry 1 in Table 1 while no leaching of Pd was
observed. Application of the catalyst to systems more immune to
leaching, e.g. gas phase hydrogenations, is a future work.
4. Conclusions
Co-impregnation of Ni and Pd with a Ni/Pd molar ratio of 7 on silica
and subsequent calcination–reduction procedure produced bimetallic
particles. The supported particles catalyzed the total hydrogenation of
unsaturated compounds including bio-derived HMF and furfural in
water. The catalyst was easy to prepare and handle, and was more
active than commercial Raney Ni and more selective than Pd/C.
Fig. 3. Hydrogenation of HMF over various catalysts. Conditions: HMF (0.5 M aq.,
10 ml), acetic acid (5.7 μl; 0.1 mmol), catalyst (19 μmol Pd), H2 (8 MPa), 313 K, 0.5 h.
aRaney Ni (100 mg; ca. 1.4 mmol Ni). bNi/SiO2 (10 wt.%, 100 mg; 170 μmol Ni).
References
[1] E.L. Kunkes, D.A. Simonetti, R.M. West, J.C. Serrano-Ruiz, C.A. Gärtner, J.A.
Dumesic, Science 322 (2008) 417–421.
[2] A.J. Ragauskas, C.K. Williams, B.H. Davison, G. Britovsek, J. Cairney, C.A. Eckert, W.J.
Frederick Jr., J.P. Hallett, D.J. Leak, C.L. Liotta, J.R. Mielenz, R. Murphy, R. Templer, T.
Tschaplinski, Science 311 (2006) 484–489.
Table 1
Hydrogenation of unsaturated compounds over Ni–Pd/SiO2 (Ni/Pd=7)a.
[3] J.N. Chheda, G.W. Huber, J.A. Dumesic, Angew. Chem. Int. Ed. 46 (2007)
7164–7183.
Entry Substrate
H2
Temp. Time Conv. Hydrogenation
[MPa] [K]
[h]
[%]
products (yield [%])
[4] G.W. Huber, S. Iborra, A. Corma, Chem. Rev. 106 (2006) 4044–4098.
[5] P. Mäki-Arvela, J. Hájek, T. Salmi, D.Y. Murzin, Appl. Catal. A 292 (2005) 1–49.
[6] C. Moreau, M.N. Belgacem, A. Gandini, Top. Catal. 27 (2004) 11–30.
[7] A.B. Merlo, V. Vetere, J.F. Ruggera, M.L. Casella, Catal. Commun. 10 (2009)
1665–1669.
[8] N. Merat, C. Godawa, A. Gaset, J. Chem. Technol. Biotechnol. 48 (1990) 145–159.
[9] S. Koso, N. Ueda, Y. Shinmi, K. Okumura, T. Kizuka, K. Tomishige, J. Catal. 267 (2009)
89–92.
[10] S. Koso, I. Furikado, A. Shimao, T. Miyazawa, K. Kunimori, K. Tomishige, Chem.
Commun. (2009) 2035–2037.
[11] K. Chen, S. Koso, T. Kubota, Y. Nakagawa, K. Tomishige, ChemCatChem 2 (2010)
547–555.
[12] R. Rinaldi, F. Schuth, ChemSusChem 2 (2009) 1096–1107.
[13] Y. Su, H.M. Brown, X. Huang, X. Zhou, J.E. Amonette, Z.C. Zhang, Appl. Catal. A
361 (2009) 117–122.
[14] J.B. Binder, R.T. Raines, J. Am. Chem. Soc. 131 (2009) 1979–1985.
[15] F. Ilgen, D. Ott, D. Kralisch, C. Reil, A. Palmberger, B. König, Green Chem. 11 (2009)
1948–1954.
1
HMF
8
8
313
313
2
99
BHTF (96), BHF (b1),
HMTF (1)
Tetrahydrofurfuryl
alcohol (96)
2b
Furfural
2
99
3c
4
Furan
Cyclohexanone
Phenol
3-Buten-1-ol
Crotyl alcohol
8
1
8
0.2
0.2
313
313
353
313
313
2
2
48
4
99
99
97
99
99
Tetrahydrofuran (98)
Cyclohexanol (99)
Cyclohexanol (97)
1-Butanol (86)
5
6d
7d
4
1-Butanol (83)
a
Conditions: substrate (0.5 M aq.; 10 ml), acetic acid (5.7 μl, 0.1 mmol), catalyst
(100 mg, 19 μmol Pd), and H2 (8 MPa), 313 K.
b
Acetic acid (0.02 mmol).
Furan (0.1 M aq., 50 mL).
Catalyst (50 mg), acetic acid (0.02 mmol). By-products were 1- and 2-butenes in
c
d
both cases.
[16] A. Takagaki, M. Ohara, S. Nishimura, K. Ebitani, Chem. Commun. (2009)
6276–6278.
[17] X.H. Qi, M. Watanabe, T.M. Aida, R.L. Smith, Green Chem. 11 (2009) 1327–1331.
[18] G. Yong, Y.-G. Zhang, J.Y. Ying, Angew. Chem. Int. Ed. 47 (2008) 9345–9348.
[19] R. Rinaldi, P. Palkovits, F. Shuth, Angew. Chem. Int. Ed. 47 (2008) 8047–8050.
[20] Z. Haibo, J.E. Holladay, H. Brown, Z.C. Zhang, Science 316 (2007) 1597–1600.
[21] Y. Román-Leshkov, J.N. Chheda, J.A. Dumesic, Science 312 (2006) 1933–1937.
[22] V. Schiavo, G. Descotes, J. Mentech, Bull. Soc. Chim. Fr. 128 (1991) 704–711.
[23] Y. Román-Leshkov, C.J. Varrett, Z.Y. Liu, J.A. Dumesic, Nature 447 (2007) 982–986.
[24] T.J. Connolly, J.L. Considine, Z. Ding, B. Forsatz, M.N. Jennings, M.F. MacEwan, K.M.
McCoy, D.W. Place, A. Sharma, K. Sutherland, Org. Proc. Res. Dev. 14 (2010)
459–465.
should be noted that the hydrogenation of furan ring as well as that of
aldehyde group significantly proceeded on this catalyst. With longer
reaction time (0.5→2 h), the yield of the total hydrogenation product
BHTF reached 96% (Table 1, entry 1). On the other hand, physical
mixture of Ni/SiO2 and Pd/SiO2 gave no enhancing effect on the
conversion of HMF and the selectivity to tetrahydrofuran derivatives,
showing the synergetic effects in Ni–Pd/SiO2 catalyst. While com-
mercial Pd/C catalyst showed high conversion, side reactions such as
C–O dissociation proceeded significantly and the selectivity to BHTF
was poor. Lower selectivity to BHTF in the Pd/C-catalyzed hydroge-
nation than those of Ni-based catalysts has been reported [24].
The Ni–Pd/SiO2 (Ni/Pd=7) catalyst was applied to the hydrogena-
tions of various water-soluble substrates (Table 1). Furfural, which is
also an important intermediate in the transformation of biomass, was
hydrogenated to tetrahydrofurfuryl alcohol in a high yield of 94%
(entry 2). Hydrogenation of unfunctionalized furan also proceeded
(entry 3). Both cyclohexanone and phenol were highly selectively
converted into cyclohexanol (entries 4 and 5). Hydrogenations
of alkenols also proceeded (entries 6 and 7). Therefore, Ni–Pd/SiO2
(Ni/Pd=7) is a highly active and selective catalyst for the total
hydrogenation of unsaturated compounds in water. In this system,
reuse of the catalyst lowers the activity (the catalyst recovered by
[25] M. Schlaf, Dalton Trans. (2006) 4645–4653.
[26] R.L. Moss, D. Pope, B.J. Davis, J. Catal. 62 (1980) 161–166.
[27] M.C. Saint-Lager, Y. Juglet, P. Dolle, L. Piccolo, R. Baudoing-Savois, J.C. Bertolini, A.
Bailly, O. Robach, C. Walker, S. Ferrer, Surf. Sci. 587 (2005) 229–235.
[28] M. Abel, Y. Robach, J.C. Bertolini, L. Porte, Surf. Sci. 454–456 (2000) 1–5.
[29] A.C. Michael, L. Lianos, J.L. Rousset, P. Delichère, N.S. Prakash, J. Massardier, Y.
Jugnet, J.C. Bertolini, Surf. Sci. 416 (1998) 288–294.
[30] P. Hermann, J.M. Guigner, B. Tardy,Y. Jugnet, D. Simon,J.C. Bertolini, J. Catal.163 (1996)
169–175.
[31] A. Valcarcel, F. Morfin, L. Piccolo, J. Catal. 263 (2009) 315–320.
[32] R. Massard, D. Uzio, C. Thomazeau, C. Pichon, J.L. Rousset, J.C. Bertolini, J. Catal.
245 (2007) 133–143.
[33] V. Simagina, V. Likholobov, G. Bergeret, M.T. Gimenez, A. Renouprez, Appl. Catal. B
40 (2003) 293–304.
[34] A. Renouprez, J.F. Faudon, J. Massardier, J.L. Rousset, P. Delichère, G. Bergeret,
J. Catal. 170 (1997) 181–190.
[35] J.F. Faudon, F. Senocq, G. Bergeret, B. Moraweck, G. Clugnet, C. Nicot, A. Renouprez,
J. Catal. 144 (1993) 460–471.
[36] J.L. Rousset, J.C. Bertolini, P. Miegge, Phys. Rev. B 53 (1996) 4947–4957.