2522
S. Cacchi et al. / Tetrahedron 63 (2007) 2519–2523
technique (SF-ICP-MS) in medium resolution (m/Dm¼
3000). The necessity of the medium resolution was manda-
tory to avoid those signals coming from molecular or iso-
baric species, such as 40Ar65Cu, could overlap the signal
of Pd at the chosen mass and overestimate the actual Pd
values. Quantification of Pd was carried out through the
standard addition calibration method in the case of dioxane,
DMF, and THF, whereas the external calibration curve was
adopted in the case of acetonitrile and toluene. Rhodium
(Rh), selected at mass 103, was used as an internal standard
to keep under control the instrumental drift. Single-element
calibrant and internal standard were prepared from 1000 mg/
mL stock solutions of Pd in 10% HNO3 and Rh in 10% HCl
by dilution with high-purity deionized water.
3.3.1.4. Compound 2e. Mp: 239–240 ꢀC; lit.8 mp 239–
1
240 ꢀC; H NMR d 13.16 (br s, 1H), 7.93 (d, J¼8.4 Hz,
2H), 7.54 (d, J¼8.5 Hz, 2H); 13C NMR d 166.9, 138.2,
131.6, 130.1, 129.1.
3.3.1.5. Compound 2f. Mp: 237–238 ꢀC; lit.8 mp 237–
1
238 ꢀC; H NMR d 13.6 (br s, 1H), 8.29 (dd, J1¼8.0 Hz,
J2¼1.9 Hz, 2H), 8.13 (dd, J1¼8.0 Hz, J2¼1.9 Hz, 2H); 13
NMR d 165.9, 150.0, 136.4, 130.7, 123.7.
C
3.3.1.6. Compound 2g. Mp: 105–107 ꢀC; lit.8 mp 105–
1
107 ꢀC; H NMR d 13.0 (br s, 1H), 7.57–7.38 (m, 3H),
7.20–7.16 (m, 1H), 3.79 (s, 3H); 13C NMR d 167.7, 159.8,
132.7, 130.2, 122.1, 119.4, 114.4, 55.8.
The Pd-doped aerogels were characterized by X-ray diffrac-
tion (XRD) with a D5000 Siemens X-ray powder diffrac-
tometer using Cu Ka incident radiation. Transmission
electron microscopy (TEM) observations were performed
using a JEOL-JEM-2010 microscope operating at 200 keV.
Surface area determinations were carried out following the
BET (Brunauer–Emmett–Teller) method with a ASAP-
2000 surface area analyzer (Micromeritics Instruments
Corp).
Acknowledgements
Work carried out in the framework of the National Project
‘Stereoselezione in Sintesi Organica. Metodologie ed Appli-
cazioni’ supported by the Ministero dell’Universita e della
Ricerca Scientifica e Tecnologica and by the University
‘La Sapienza’. Financial support from ‘Ministerio de Educa-
cion y Ciencia’ (Projects CTQ2005-04968-C02-01 and
ꢁ
ꢀ
MAT2003-01052) and ‘DURSI-Generalitat de Catalunya’
(Projects SGR 2005-00452 and SGR 2005-00305) is grate-
fully acknowledged.
3.3.1. Typical procedure for the preparation of carboxy-
lic acids from aryl iodides. A solution of HCOOLi$H2O
(97.2 mg, 1.389 mmol), EtN(i-Pr)2 (161 mL, 0.926 mmol),
and acetic anhydride (127 mL, 0.926 mmol) in anhydrous
DMF (0.5 mL) was stirred at room temperature for 1 h.
Then, p-iodotoluene (101.0 mg, 0.463 mmol), 35.3% Pd–
carbon aerogel (7.0 mg, 0.023 mmol), and LiCl (54.4 mg,
1.389 mmol) in anhydrous DMF (1 mL) were added. The re-
action mixture was stirred at 100 ꢀC for 24 h. After cooling,
the Pd–carbon aerogel was recovered by decanting the solu-
tion and separating the catalyst system mechanically (it was
simply picked up with a spatula and immersed in DMF to
maintain it wet till the subsequent utilization) from the salts
in the presence of air. Then, the reaction mixture was diluted
with ethyl acetate, washed with 2 N HCl, dried over Na2SO4,
and concentrated under reduced pressure. The residue was
purified by flash chromatography (silica gel, 30 g; n-hex-
ane/ethyl acetate/acetic acid 85/14/1 v/v) to give 55.5 mg
(88% yield) of 2a: mp: 179–180 ꢀC; lit.8 mp 179–180 ꢀC;
1H NMR d 12.78 (br s, 1H), 7.83 (d, J¼8.1 Hz, 2H), 7.28
(d, J¼8.1 Hz, 2H), 2.34 (s, 3H); 13C NMR d 167.9, 143.6,
129.9, 129.7, 128.6, 21.7.
References and notes
1. (a) Tsuji, J. Palladium Reagents and Catalysts—Innovation in
Organic Synthesis; Wiley: New York, NY, 1995; (b) Handbook
of Organopalladium Chemistry for Organic Synthesis; Negishi,
E., Ed.; Wiley: New York, NY, 2002; Vols. 1 and 2; (c) Tsuji, J.
Palladium Reagents and Catalysts—New Perspectives for the
21st Century; Wiley: New York, NY, 2004.
2. Garret, C. E.; Prasad, K. Adv. Synth. Catal. 2004, 346, 889.
3. For a review, see: Ley, S. V.; Baxendale, I. R.; Brem, R. N.;
Jackson, P. S.; Leach, A. G.; Longbottom, A.; Nesi, M.;
Scott, J. S.; Storer, R. I.; Taylor, S. J. J. Chem. Soc., Perkin
Trans. 1 2000, 3815.
4. (a) For some recent leading references, see: Akiyama, R.;
Kobayashi, S. Angew. Chem., Int. Ed. 2001, 40, 3469; (b)
Ramarao, C.; Ley, S. V.; Smith, S. C.; Shirley, I. M.;
DeAlmeida, N. Chem. Commun. 2002, 1132; (c) Ley, S. V.;
Ramarao, C.; Gordon, R. S.; Holmes, A. B.; Morrison, A. J.;
McConvey, I. F.; Shirley, I. M.; Smith, S. C.; Smith, M. D.
Chem. Commun. 2002, 1134; (d) Bremeyer, N.; Ley, S. V.;
Ramarao, C.; Shirley, I. M.; Smith, S. C. Synlett 2002, 1843;
(e) Ley, S. V.; Mitchell, C.; Pears, D.; Ramarao, C.; Yu,
J.-Q.; Zhou, W. Org. Lett. 2003, 5, 4665.
3.3.1.1. Compound 2b. Mp: 168–170 ꢀC; lit.8 mp 168–
1
170 ꢀC; H NMR d 13.37 (br s, 1H), 8.07 (s, 4H), 4.35 (q,
J¼7.1 Hz, 2H), 1.35 (t, J¼7.1 Hz, 3H); 13C NMR d 167.1,
165.6, 135.3, 134.0, 130.1, 129.8, 61.7, 14.6.
3.3.1.2. Compound 2c. Mp: 161–162 ꢀC; lit.8 mp 161–
5. (a) H€using, N.; Schubert, U. Angew. Chem., Int. Ed. 1998, 37,
22; (b) Pierre, A. C.; Pajonk, G. M. Chem. Rev. 2002, 102,
4243.
6. See, for example: (a) Baumman, T. F.; Fox, G. A.; Satcher,
J. H., Jr. Langmuir 2002, 18, 7073; (b) Baumman, T. F.;
Satcher, J. H., Jr. Chem. Mater. 2003, 15, 3745; (c)
1
162 ꢀC; H NMR d 13.18 (br s, 1H), 8.90 (d, J¼8.5 Hz,
1H), 8.19–8.12 (m, 2H), 8.10–7.98 (m, 1H), 7.7–7.4 (m,
3H); 13C NMR d 169.0, 133.8, 133.3, 131.0, 130.2, 129.0,
128.1, 127.9, 126.5, 125.9, 125.2.
3.3.1.3. Compound 2d. Mp: 208–209 ꢀC; lit.8 mp 208–
Maldonado-Hodar, F. J.; Moreno-Castilla, C.; Perez-Cadenas,
ꢀ
A. F. Microporous Mesoporous Mater. 2004, 69, 119; (d)
ꢀ
1
209 ꢀC; H NMR d 13.32 (br s, 1H), 8.04 (s, 4H), 2.62 (s,
3H); 13C NMR d 198.2, 167.1, 140.3, 135.0, 130.0, 128.8,
27.4.
Moreno-Castilla, C.; Maldonado-Hodar, F. J. Carbon 2005,
43, 455.
ꢀ