D
A. Shibata et al.
Letter
Synlett
(e) Crich, D. In Comprehensive Organic Synthesis;
7
V
o.
l
Trost, B. M.;
PhI(OAc)2 (1.0 equiv)
LiBr (1.0 equiv)
O
O
(eq. 1)
(eq. 2)
Fleming, I., Eds.; Pergamon: Oxford, 1991, 717. (f) Wang, Z.;
Zhu, L.; Yin, F.; Su, Z.; Li, Z.; Li, C. J. Am. Chem. Soc. 2012, 134,
4258.
(55%)
MeO
MeO
CF3CH2OH
r.t., 10 min
Br
(2) (a) Hamamoto, H.; Umemoto, H.; Umemoto, M.; Ohta, C.;
Doshita, M.; Miki, Y. Synlett 2010, 21, 2593. (b) Hamamoto, H.;
Hattori, S.; Takemaru, K.; Miki, Y. Synlett 2011, 22, 1563.
(3) Miki, Y.; Umemoto, H.; Doshita, M.; Hamamoto, H. Tetrahedron
Lett. 2012, 53, 1924.
PhI(OAc)2 (3.0 equiv)
LiBr (1.0 equiv)
Br
OMe
CF3CH2OH
r.t., 10 min
MeO
MeO
(72%)
(4) For recent reviews, see: (a) Stang, P. J.; Zhdankin, V. V. Chem.
Rev. 1996, 96, 1123. (b) Zhdankin, V. V.; Stang, P. J. Chem. Rev.
2002, 102, 2523. (c) Hypervalent Iodine Chemistry: Modern
Developments in Organic Synthesis; Wirth, T., Ed.; Springer:
Berlin, 2003. (d) Tohma, H.; Kita, Y. Adv. Synth. Catal. 2004, 346,
111. (e) Moriarty, R. M. J. Org. Chem. 2005, 70, 2893. (f) Wirth, T.
Angew. Chem. Int. Ed. 2005, 44, 3656. (g) Zhdankin, V. V.; Stang,
P. J. Chem. Rev. 2008, 108, 5299. (h) Ochiai, M.; Miyamoto, K. Eur.
J. Org. Chem. 2008, 4229. (i) Ochiai, M. Synlett 2009, 159.
(j) Dohi, T.; Kita, Y. Chem. Commun. 2009, 2073. (k) Duschek, A.;
Kirsch, S. F. Angew. Chem. Int. Ed. 2011, 50, 1524. (l) Merritt, E.
A.; Olofsson, B. Synthesis 2011, 517. (m) Silva, L. F. Jr.; Olofsson,
B. Nat. Prod. Rep. 2011, 28, 1722. (n) Yoshimura, A.; Zhdankin, V.
V. Chem. Rev. 2016, 116, 3328. (o) Li, Y. F.; Hari, D. P.; Vita, M. V.;
Waser, J. Angew. Chem. Int. Ed. 2016, 55, 4436. (p) Hypervalent
Iodine Chemistry; Wirth, T., Ed.; Springer: Berlin, 2016.
(5) (a) Nair, V.; Panicker, S. B.; Augustine, A.; George, T. G.; Thomas,
S.; Vairamani, M. Tetrahedron 2001, 57, 7417. (b) Roy, S. C.;
Guin, C.; Rana, K. K.; Maiti, G. Tetrahedron Lett. 2001, 42, 6941.
(c) Mo, S.; Zhu, Y.; Shen, Z. Org. Biomol. Chem. 2013, 11, 2756.
(d) Zhang, P.; Hong, L.; Li, G.; Wang, R. Adv. Synth. Catal. 2015,
357, 345. (e) Xu, J.; Zhu, X.; Zhou, G.; Ying, B.; Ye, P.; Su, L.; Shen,
C.; Zhang, P. Org. Biomol. Chem. 2016, 14, 3016.
(6) (a) Dieter, R. K.; Nice, L. E.; Velu, S. E. Tetrahedron Lett. 1996, 37,
2377. (b) Subbarayappa, A.; Ghosh, S.; Patoliya, P. U.;
Ramanshandraiah, G.; Agrawal, M.; Gandhi, M. R.; Upadhyay, S.
C.; Ghosh, P. K.; Ranu, B. C. Green Chem. 2008, 10, 232. (c) Wang,
G.-W.; Gao, J. Green Chem. 2012, 14, 1125.
(7) (a) Rousseau, G.; Robin, S. Tetrahedron Lett. 2000, 41, 8881.
(b) Koo, B.-S.; Lee, C. K.; Lee, K.-J. Synth. Commun. 2002, 32,
2115. (c) Lee, C. K.; Koo, B.-S.; Lee, Y. S.; Cho, H. K.; Lee, K.-J. Bull.
Korean Chem. Soc. 2002, 23, 1667. (d) Adimurthy, S.; Patoliya, P.
U. Synth. Commun. 2007, 37, 1571.
Scheme 3 The reactions of p-anisaldehyde and 4-methoxybenzyl
methyl ether under the optimized conditions
tion of the benzylic alcohol followed by aromatization
through dehydroxymethylation.
In conclusion, we describe a novel method for the dehy-
droxymethyl bromination of alkoxybenzyl alcohols by us-
ing a hypervalent iodine reagent and lithium bromide in
F3CCH2OH at room temperature.9,10 This is the first study
detailing the direct conversion of alkoxybenzyl alcohols to
aryl bromides. This method affords the corresponding bro-
mide regiospecifically, which might be more useful than
the Friedel–Crafts-type bromination. Selective monobromi-
nation and dibromination were achieved by changing the
proportions of reagents. This reaction is currently being ap-
plied to other halogenation processes and the elucidation of
a detailed reaction mechanism is underway.
Funding Information
This work was supported by JSPS KAKENHI Grant Numbers 18K05132
and 15K18840, and also by the MEXT-Supported Program for the
Strategic Research Foundation at Private Universities, 2014–2018
(S1411037).
)(
Acknowledgment
We thank Kindai University Joint Research Center for use of facilities.
We also thank the reviewers for their fruitful suggestions.
(8) Tohma, H.; Maegawa, T.; Takizawa, S.; Kita, Y. Adv. Synth. Catal.
2002, 344, 328.
(9) 1-Bromo-2-methoxybenzene (2a) (see Ref. 10); Typical Pro-
cedure
Supporting Information
LiBr·H2O (0.2 mmol) and PhI(OAc)2 (0.2 mmol) were added to a
solution of 4-methoxybenzyl alcohol (1a; 0.2 mmol) in
F3CCH2OH (1 mL) at r.t. When the reaction was complete (TLC),
sat. aq Na2SO3 was added and the mixture was extracted with
CH2Cl2. The combined organic layers were washed with brine,
dried (Na2SO4), and concentrated in vacuo. The residue was
purified by column chromatography (silica gel) to give a yellow
oil; yield: 34.1 mg (91%); 1H NMR (CDCl3): δ = 3.79 (s, 3 H), 6.79
(dd, J = 2.0, 8.6 Hz, 2 H), 7.38 (dd, J = 2.0, 8.6 Hz, 2 H).
Supporting information for this article is available online at
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
ortioInfgrmoaitn
References and Notes
(1) (a) Hunsdiecker, H.; Hunsdiecker, C. Ber. Dtsch. Chem. Ges. B
1942, 75, 291. (b) Johnson, R. G.; Ingham, R. K. Chem. Rev. 1956,
56, 219. (c) Wilson, C. V. Org. React. (N.Y.) 1957, 9, 332.
(d) Sheldon, R. A.; Kochi, J. K. Org. React. (N.Y.) 1972, 19, 279.
(10) Braddock, D. C.; Cansell, G.; Hermitage, S. A. Synlett 2004, 461.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–D