Communication
Organic & Biomolecular Chemistry
Typical catalytic reaction
11 S. T. Oyama, T. Gott, H. Zhao and Y.-K. Lee, Catal. Today,
2009, 143, 94–107.
12 D. Albani, K. Karajovic, B. Tata, Q. Li, S. Mitchell, N. López
and J. Pérez-Ramírez, ChemCatChem, 2019, 11, 457–464.
13 Y. Zhu, S. Yang, C. Cao, W. Song and L.-J. Wan, Inorg.
Chem. Front., 2018, 5, 1094–1099.
14 R. Gao, L. Pan, H. Wang, X. Zhang, L. Wang and J.-J. Zou,
ACS Catal., 2018, 8, 8420–8429.
15 S. Yang, L. Peng, E. Oveisi, S. Bulut, D. T. Sun, M. Asgari,
O. Trukhina and W. L. Queen, Chem. – Eur. J., 2018, 24,
4234–4238.
As a representative catalytic reaction, the transformation of 1a
to 2a using nano-Ni2P/TiO2 was typically performed as follows.
First, nano-Ni2P/TiO2 (0.145 g) and 4 Å M.S. (0.1 g) were placed
in a 50 mL stainless-steel autoclave with a Teflon inner
cylinder, followed by the addition of 1a (0.5 mmol) and
toluene (3 mL). The reaction mixture was stirred vigorously at
120 °C under 10 bar of H2. The reaction solution was then
analyzed by GC-MS to determine the conversion and yield
using naphthalene as an internal standard method.
16 J.-J. Shi, H.-J. Feng, C.-L. Qv, D. Zhao, S.-G. Hong and
N. Zhang, Appl. Catal., A, 2018, 561, 127–136.
17 Y. Chen, C. Li, J. Zhou, S. Zhang, D. Rao, S. He, M. Wei,
D. G. Evans and X. Duan, ACS Catal., 2015, 5, 5756–5765.
18 S. Carenco, A. Leyva-Pérez, P. Concepción, C. Boissière,
N. Mézailles, C. Sanchez and A. Corma, Nano Today, 2012,
7, 21–28.
Conflicts of interest
The authors declare that they have no competing interests.
19 S. Fujita, K. Nakajima, J. Yamasaki, T. Mizugaki,
K. Jitsukawa and T. Mitsudome, ACS Catal., 2020, 10, 4261–
4267.
20 T. Mitsudome, M. Sheng, A. Nakata, J. Yamasaki,
T. Mizugaki and K. Jitsukawa, Chem. Sci., 2020, 11, 6682–
6689.
21 S. C. A. Sousa and A. C. Fernandes, Coord. Chem. Rev.,
2015, 284, 67–92.
22 M. C. Carreño, Chem. Rev., 1995, 95, 1717–1760.
23 M. Madesclaire, Tetrahedron, 1988, 44, 6537–6580.
24 P. Bravo, G. Resnati, F. Viani and A. Arnone, Tetrahedron,
1987, 43, 4635–4647.
Acknowledgements
This work was supported by JSPS KAKENHI Grant No.
17H03456, 17H03457, 18H01790, and 20H02523. A part of this
work was supported by the Cooperative Research Program of
the Institute for Catalysis, Hokkaido University (20B1027) and
the Nanotechnology Open Facilities in Osaka University
(A-19-OS-0060), Ministry of Education, Culture, Sports, Science
and Technology (MEXT), Japan. We thank Dr Yoshikata
Nakajima (Institute for NanoScience Design, Osaka University)
for the TEM observation and Dr Toshiaki Ina (SPring-8) for the
XAFS measurements (2019A1390, 2019A1649, 2019B1560, and
2020A1487).
25 J. Drabowicz and M. Mikołajczyk, Synthesis, 1976, 527–528.
26 S. Kano, Y. Tanaka, E. Sugino and S. Hibino, Synthesis,
1980, 695–697.
27 J. Zhang, X. Gao, C. Zhang, C. Zhang, J. Luan and D. Zhao,
Synth. Commun., 2010, 40, 1794–1801.
Notes and references
1 K. D. Gilroy, A. Ruditskiy, H.-C. Peng, D. Qin and Y. Xia, 28 T. Aida, N. Furukawa and S. Oae, Tetrahedron Lett., 1973,
Chem. Rev., 2016, 116, 10414–10472. 14, 3853–3856.
2 M. Sankar, N. Dimitratos, P. J. Miedziak, P. P. Wells, 29 D. Landini, A. M. Maia and F. Rolla, J. Chem. Soc., Perkin
C. J. Kiely and G. J. Hutchings, Chem. Soc. Rev., 2012, 41,
8099–8139.
Trans. 2, 1976, 1288–1291.
30 J. T. Doi and W. K. Musker, J. Am. Chem. Soc., 1981, 103,
3 H. Fang, J. Yang, M. Wen and Q. Wu, Adv. Mater., 2018, 30,
1705698.
4 W. Luo, M. Sankar, A. M. Beale, Q. He, C. J. Kiely,
1159–1163.
31 T. J. Wallace and J. J. Mahon, J. Am. Chem. Soc., 1964, 86,
4099–4103.
P. C. Bruijnincx and B. M. Weckhuysen, Nat. Commun., 32 B. Karimi and D. Zareyee, Synthesis, 2003, 1875–1877.
2015, 6, 6540.
33 I. W. J. Still, S. K. Hasan and K. Turnbull, Can. J. Chem.,
1978, 56, 1423–1428.
5 L. Kesavan, R. Tiruvalam, M. H. Ab Rahim, M. I. bin
Saiman, D. I. Enache, R. L. Jenkins, N. Dimitratos, 34 S. Kikuchi, H. Konishi and Y. Hashimoto, Tetrahedron,
J. A. Lopez-Sanchez, S. H. Taylor, D. W. Knight, C. J. Kiely
and G. J. Hutchings, Science, 2011, 331, 195–199.
6 Y. Li, Z. Dong and L. Jiao, Adv. Energy Mater., 2020, 10,
1902104.
7 Y. Shi and B. Zhang, Chem. Soc. Rev., 2016, 45, 1529–1541.
8 Y. Lv and X. Wang, Catal. Sci. Technol., 2017, 7, 3676–3691.
9 M. C. Alvarez-Galvan, J. M. Campos-Martin and
J. L. G. Fierro, Catalysts, 2019, 9, 293.
2005, 61, 3587–3591.
35 Y. Jang, K. T. Kim and H. B. Jeon, J. Org. Chem., 2013, 78,
6328–6331.
36 Z. Zhu and J. H. Espenson, J. Mol. Catal. A: Chem., 1995,
103, 87–94.
37 R. Sanz, J. Escribano, R. Aguado, M. R. Pedrosa and
F. J. Arnáiz, Synthesis, 2004, 1629–1632.
38 M. Bagherzadeh, M. M. Haghdoost, M. Amini and
P. G. Derakhshandeh, Catal. Commun., 2012, 23, 14–19.
10 S. T. Oyama, J. Catal., 2003, 216, 343–352.
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2020