Organocatalytic Approach for Transfer Hydrogenation of Quinolines, Benzoxazines and…
Table 4 Transfer hydrogenation of 3-substituted-2H-1,4-benzothia-
References
zines
1. Taylor MS, Jacobsen EN (2006) Angew Chem Int Ed
45:1520–1543
2. Doyle AG, Jacobsen EN (2007) Chem Rev 107:5713–5743
3. Yu X, Wang W (2008) Chem Asian J 3:516–532
4. Wende RC, Schreiner PR (2012) Green Chem 14:1821–1849
5. Phipps RJ, Hamilton GL, Toste FD (2012) Nat Chem 4:603–614
6. Auvil TJ, Schafer AG, Mattson AE (2014) Eur J Org Chem
13:2633–2646
Entrya
R
Time (h)
Yieldb (%)
1
2
3
Phenyl
4-Methoxyphenyl
4-Bromophenyl
48
48
48
78
81
80
7. Yu S, Pu L (2015) Tetrahedron 71:745–772
8. Tran NT, Wilson SO, Franz AK (2011) Org Lett 14:186–189
9. Schafer AG, Wieting JM, Fisher TJ, Mattson AE (2013) Angew
Chem 125:11531–11534
aAll reactions were performed with 2H-1,4-benzothiazine
(0.10 mmol) and HEH (0.13 mmol) in the presence of 10 mol% of
thiourea dioxide at 60°C in 1 mL of CHCl3
10. Alemán J, Parra A, Jiang H, Jørgensen KA (2011) Chem Eur J
17:6890–6899
11. Storer RI, Aciro C, Jones LH (2011) Chem Soc Rev
40:2330–2346
bYield of isolated product after column chromatography
12. Tsakos M, Kokotos CG (2013) Tetrahedron 69:10199–10222
13. Chauhan P, Mahajan S, Kaya U, Hack D, Enders D (2015) Adv
Synth Catal 357:253–281
poison of sulfur-containing compounds to them. Initially,
In the presence of 1 mol% of TDO, when 3-phenyl substi-
tuted benzothiazine 5a was used as a model substrate, the
reaction proceeded much slowly and was not completed
even with prolonged reaction time (48 h). Pleasingly, sim-
ply increasing the catalyst loading to 10 mol% could greatly
improve the catalytic activities of TDO and all substrates
5a–c exhibited good reactivaties in the transfer hydro-
2H-benzothiazines 6a–c in good yields (Table 4).
14. Seebach D, Beck AK, Heckel A (2001) Angew Chem Int Ed
40:92–138
15. Pellissier H (2008) Tetrahedron 64:10279–10317
16. Kotke M, Schreiner P (2009) In: Pihko PM (ed) (Thio) urea
organocatalysts. Wiley, Weinheim, pp 141–351
17. Zhang Z, Schreiner PR (2009) Chem Soc Rev 38:1187–1198
18. Connon SJ (2006) Chem Eur J 12:5418–5427
19. Takemoto Y (2010) Chem Pharm Bull 58:593–601
20. Serdyuk OV, Heckel CM, Tsogoeva SB (2013) Org Biomol
Chem 11:7051–7071
21. Fang X, Wang C-J (2015) Chem Commun 51:1185–1197
22. Schreiner PR (2003) Chem Soc Rev 32:289–296
23. Takemoto Y (2005) Org Biomol Chem 3:4299–4306
24. Jakab G, Tancon C, Zhang Z, Lippert KM, Schreiner PR (2012)
Org Lett 14:1724–1727
25. Fan Y, Kass SR (2016) Org Lett 18:188–191
26. Schreiner PR, Wittkopp A (2002) Org Lett 4:217–220
27. Wittkopp A, Schreiner PR (2003) Chem Eur J 9:407–414
28. Lippert KM, Hof K, Gerbig D, Ley D, Hausmann H, Guenther S,
Schreiner PR (2012) Eur J Org Chem 30:5919–5927
29. Zhang ZG, Bao ZB, Xing HB (2014) Org Biomol Chem
12:3151–3162
4 Conclusions
In conclusion, we have developed an efficient transfer
hydrogenation of C=N-containing heterocyclic derivatives
including quinolines, benzoxazines and benzothiazines
with thiourea dioxide as a cost effective and readily avail-
able catalyst and HEH as the hydrogen source. This method
represents not only the first example of thiourea dioxide-
catalyzed transfer hydrogenation of these substrates, but
also give direct access to the biologically relevant building
blocks, 1,2,3,4-tetrahydroquinolines, dihydro-2H-benzoxa-
zines and dihydro-2H-benzothiazines under mild reaction
conditions. Further studies will be directed to the further
application of thiourea dioxide in organocatalytic transfor-
mations and potential utilization of chiral thiourea diox-
ides for asymmetric transfer hydrogenation of heterocyclic
compounds.
30. Makarov SV, Horvath AK, Silaghi-Dumitrescu R, Gao Q (2014)
Chem Eur J 20:14164–14176
31. Verma S, Kumar S, Jain SL, Sain B (2011) Org Biomol Chem
9:6943–6948
32. Kumar S, Verma S, Jain SL, Sain B (2011) Tetrahedron Lett
52:3393–3396
33. Verma S, Singh R, Tripathi D, Gupta P, Bahuguna GM, Jain SL
(2013) RSC Adv 3:4184–4188
34. Ghashang M, Mansoor SS, Aswin K (2014) Chin J Catal
35:127–133
35. Bhale PS, Dongare SB, Mule YB (2014) Chem Sci Trans
4:246–250
36. Vekariya RH, Patel KD, Patel HD (2016) Res Chem Intermed
42:4683–4696
37. Qiao X, Zhang Z, Bao Z, Su B, Xing H, Yang Q, Ren Q (2014)
RSC Adv 4:42566–42568
38. Rueping M, Antonchick AP, Theissmann T (2006) Angew Chem
Int Ed 45:3683–3686
Acknowledgements We are grateful for financial support from
the National Key R&D Program of China (2016YFA0202900),
the National Natural Science Foundation of China (21376212,
21436010), the Fundamental Research Funds for the Central Univer-
sities (2016FZA4019) and the Natural Science Foundation of Zheji-
ang Province, China (LY13B060001).
39. Guo QS, Du DM, Xu J (2008) Angew Chem Int Ed 47:759–762
40. Tu X-F, Gong L-Z (2012) Angew Chem Int Ed 51:11346–11349
41. Wang WB, Lu SM, Yang PY, Han XW, Zhou YG (2003) J Am
Chem Soc 125:10536–10537
1 3