LETTER
Oxidation of Secondary Alcohols to Ketones
175
(5) (a) Backvall, J. E.; Chowdhury, R. L.; Karlsson, U. J. Chem.
Soc., Chem. Commun. 1991, 473. (b) Backvall, J. E.;
Hopkins, R. B.; Grinnberg, H.; Mader, M.; Awasthi, A. K. J.
Am. Chem. Soc. 1990, 112, 5160.
(6) Marko, I. E.; Giles, P. R.; Tsukazaki, M.; Chelle-Regnaut, I.;
Urch, C. J.; Brown, S. M. J. Am. Chem. Soc. 1997, 119,
12661.
(7) Yamaguchi, K.; Mori, K.; Mizugaki, T.; Ebitani, K.;
Kaneda, K. J. Am. Chem. Soc. 2000, 122, 7144.
(8) Csjernyik, G.; Ell, A. H.; Fadini, I.; Pugin, B.; Backvall, J.
E. J. Org. Chem. 2002, 67, 1657.
(9) Kaneda, K.; Yamashita, T.; Matsushita, T.; Ebitani, K. J.
Org. Chem. 1998, 63, 1750.
(19) General Experimental Procedure: To a stirred solution of
secondary alcohol (1 mmol) and 30% H2O2 (2 mmol) in
MeCN (5 mL) was added drop wise aq 48% HBr (20 mol%)
and the reaction mixture was refluxed for the time as given
in Table 1. The progress of the reaction was monitored by
TLC (SiO2). At the end of reaction the excess H2O2 was
destroyed by the addition of aq bisulfite followed by the
filtration through a small Buchner funnel. After filtration,
the reaction mixture was purified by the solvent extraction
with CH2Cl2 (3 times) and the solvent was evaporated under
vacuum. The residue thus obtained was purified by column
chromatography on silica gel using EtOAc–hexane (1:4) as
eluent. Evaporation of the solvent yielded corresponding
ketones. The reaction times and yields of the products are
presented in the Table 1. The products were identified by
comparing their physical and spectral data with those of
authentic compounds reported in literature.
(10) Kakiuchi, N.; Maeda, Y.; Nishimura, T.; Uemura, S. J. Org.
Chem. 2001, 66, 6620.
(11) Kalra, S. J. S.; Punniyamurthy, T.; Iqbal, J. Tetrahedron
Lett. 1994, 35, 4847.
(12) (a) Pitzner, K. E.; Moffatt, J. G. J. Am. Chem. Soc. 1965, 87,
5661. (b) Parikh, J. R.; Doering, W. E. J. Am. Chem. Soc.
1967, 89, 5505. (c) Omura, K.; Sharma, A. K.; Swern, D. J.
Org. Chem. 1976, 41, 957.
(13) (a) Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651. (b)
Review: Mancuso, A. J.; Swern, D. Synthesis 1981, 165.
(14) (a) Stevens, R. V.; Chapman, K. T. Tetrahedron Lett. 1982,
45, 4647. (b) Stevens, V.; Chapman, K. T.; Weller, H. N. J.
Org. Chem. 1980, 45, 2030.
(20) Velusamy, S.; Punniyamurthy, T. Org. Lett. 2004, 6, 217.
(21) Surendra, K.; Srilakshmi Krishnaveni, N.; Arjun Reddy, M.;
Nageswar, Y. V. D.; Rama Rao, K. J. Org. Chem. 2003, 68,
2058.
(22) (a) Pouchart, C. J. The Aldrich Library of NMR Spectra; 2nd
ed.: Vol. 1, 395 B. (b) Pouchart, C. J. The Aldrich Library of
NMR Spectra; 2nd ed.: Vol. 1, 397 B. (c) Pouchart, C. J.
The Aldrich Library of NMR Spectra; 2nd ed.: Vol. 1, 393 B.
(23) (a) Pouchart, C. J. The Aldrich Library of Infrared Spectra;
3rd ed.: 256 G. (b) Pouchart, C. J. The Aldrich Library of
Infrared Spectra; 3rd ed.: 257 H. (c) Pouchart, C. J. The
Aldrich Library of Infrared Spectra; 3rd ed: 255 C.
(24) (a) Pouchart, C. J. The Aldrich Library of NMR Spectra; 2nd
ed.: Vol. 2, 59. (b) Pouchart, C. J. The Aldrich Library of
Infrared Spectra; 3rd ed.: 882 A.
(15) Shaabani, A.; Ameri, M. J. Chem. Res., Synop. 1998, 100.
(16) Mukaiyama, T.; Matsuo, J.; Iida, D.; Kitagawa, H. Chem.
Lett. 2001, 846.
(17) Matsuo, J.; Kawana, A.; Yamanaka, H.; Mukaiyama, T.
Chem. Lett. 2003, 32, 182.
(18) Daniel, R. B.; de Visser, S. P.; Shaik, S.; Neumann, R. J. Am.
Chem. Soc. 2003, 125, 12116.
(25) Bouquet, F.; Paquot, C. Bull. Soc. Chim. Fr. 1948, 1165.
Synlett 2005, No. 1, 173–175 © Thieme Stuttgart · New York