PHOSPHORUS, SULFUR, AND SILICON AND THE RELATED ELEMENTS
9
X-Ray Crystal-Structure of Octapyrrolidinocyclotetraphosphazene.
N4P4(NC4H8)8. J. Mol. Struct. 1978, 49, 421–423. DOI: 10.1016/
References
[1] Ainscough, E. W.; Brodie, A. M.; Derwahl, A.; Kirk, S.; Otter,
C. A. Conformationally Rigid Chelate Rings in Metal
Complexes of Pyridyloxy-Substituted 2,2’-Dioxybiphenyl-
Cyclotetra- and Cyclotriphosphazene Platforms. Inorg. Chem.
[2] Allen, C. W. Regio-and Stereochemical Control in Substitution
Reactions of Cyclophosphazenes. Chem. Rev. 1991, 91, 119–135.
[3] Shaw, R. A.; Fitzsimmons, B. W.; Smith, B. C. The
Phosphazenes (Phosphonitrilic Compounds). Chem. Rev. 1962,
[4] Elias, A. J.; Shreeve, J. M. Perfluorinated Cyclic Phosphazenes.
[5] Breuer, O.; Sundararaj, U. Big Returns from Small Fibers: A
Review of Polymer/Carbon Nanotube Composites. Polym.
[6] Jamain, Z.; Khairuddean, M.; Saidin, S. A. Synthesis and
Characterization of 1, 4-Phenylenediamine Derivatives
Containing Hydroxyl and Cyclotriphosphazene as Terminal
[7] Brauge, L.; Veriot, G.; Franc, G.; Deloncle, R.; Caminade, A.-
M.; Majoral, J.-P. Synthesis of Phosphorus Dendrimers Bearing
Chromophoric End Groups: Toward Organic Blue Light-
Emitting Diodes. Tetrahedron 2006, 62, 11891–11899. DOI: 10.
[8] Bao, R.; Pan, M.; Qiu, J. J.; Liu, C. M. Synthesis and
Characterization of Six-Arm Star-Shaped Liquid Crystalline
Cyclotriphosphazenes. Chin. Chem. Lett. 2010, 21, 682–685.
[9] S¸enkuytu, E.; Ec¸ik, E. T. New Hexa-Bodipy Functionalized
Dendrimeric Cyclotriphosphazene Conjugates as Highly
Selective and Sensitive Fluorescent Chemosensor for Co2þ Ions.
[10] Asmafiliz, N.; Berberoglu, I.; Ozgur, M.; Kilic, Z.; Kayalak, H.;
Acik, L.; Turk, M.; Hokelek, T. Phosphorus-Nitrogen
Compounds: Part 46. The Reactions of N3P3Cl6 with Bidentate
and Monodentate Ligands: The Syntheses, Structural
Characterizations, Antimicrobial and Cytotoxic Activities, and
DNA Interactions of (N/N)Spirocyclotriphosphazenes with 4-
Chlorobenzyl Pendant Arm. Inorg. Chim. Acta 2019, 495,
[17] Akbas, H.; Okumus, A.; Kilic, Z.; Hokelek, T.; Suzen, Y.; Koc,
L. Y.; Acik, L.; Celik, Z. B. Phosphorus-Nitrogen Compounds
Part 27. Syntheses, Structural Characterizations, Antimicrobial
and Cytotoxic Activities, and DNA Interactions of New
Phosphazenes Bearing Secondary Amino and Pendant (4-
Fluorobenzyl)Spiro Groups. Eur. J. Med. Chem. 2013, 70,
[18] Sournies, F.; Labarre, J.-F.; Spreafico, F.; Filippeschi, S.; Quan
Jin, X. Attempts at the Production of More Selective
Antitumorals.
2.
The
Antineoplastic
Activity
of
Cyclophosphazenes Linked to Spermine. J. Mol. Struct. 1986,
[19] Dueymes, M.; Fourniꢀe, G. J.; Mignon-Contꢀe, M.; In, S.; Contꢀe,
J. J. Prevention of Lupus Diseases in Mrl/I, Nzbxnzw, and Bxsb
Mice Treated with a Cyclophosphazene Derived Drug. Clin.
Immunol. Immunopathol. 1986, 41, 193–205. DOI: 10.1016/
[20] Ciftci, G. Y.; Senkuytu, E.; Incir, S. E.; Yuksel, F.; Olcer, Z.;
Yildirim, T.; Kilic, A.; Uludag, Y. First Paraben Substituted
Cyclotetraphosphazene Compounds and DNA Interaction
Analysis with a New Automated Biosensor. Biosens. Bioelectron.
[21] Pollock, T.; Weaver, R. E.; Ghasemi, R.; Decatanzaro, D. Butyl
Paraben and Propyl Paraben Modulate Bisphenol
a and
Estradiol Concentrations in Female and Male Mice. Toxicol.
[22] Baytak, A. K.; Duzmen, S.; Teker, T.; Aslanoglu, M.
Voltammetric Determination of Methylparaben and Its DNA
Interaction Using
a Novel Platform Based on Carbon
Nanofibers and Cobalt-Nickel-Palladium Nanoparticles. Sens.
[23] Amin, A.; Chauhan, S.; Dare, M.; Bansal, A. K. Degradation of
Parabens by Pseudomonas beteli and Burkholderia latens. Eur. J.
[24] Ciftci, G. Y.; Senkuytu, E.; Incir, S. E.; Ecik, E. T.; Zorlu, Y.;
Olcer, Z.; Uludag, Y. Characterization of Paraben Substituted
Cyclotriphosphazenes, and a DNA Interaction Study with a
Real-Time Electrochemical Profiling Based Biosensor.
€
[11] G€orgu€lu€, A. O.; Koran, K.; Ozen, F.; Tekin, S.; Sandal, S.
[25] Senkuytu, E.; Yildirim, T.; Olcer, Z.; Uludag, Y.; Ciftci, G. Y.
DNA Interaction Analysis of Fluorenylidene Double Bridged
Cyclotriphosphazene Derivatives. Inorg. Chim. Acta 2018, 477,
Synthesis, Structural Characterization and Anti-Carcinogenic
Activity
Dioxybiphenyl and Chalcone Groups. J. Mol. Struct. 2015,
of
New
Cyclotriphosphazenes
Containing
[26] Eserci, H.; S¸enkuytu, E.; Okutan, E. New Cyclotriphosphazene
Based Nanotweezers Bearing Perylene and Glycol Units and
Their Non-Covalent Interactions with Single Walled Carbon
[27] Jadhav, V. B.; Toti, U. S.; Cui, J. X.; Jun, Y. J.; Sohn, Y. S.
Amphiphilic Cyclotriphosphazenes Grafted with Branched
Oligopeptides. Bull. Korean Chem. Soc. 2010, 31, 3735–3739.
[28] Toti, U. S.; Moon, S. H.; Kim, H. Y.; Jun, Y. J.; Kim, B. M.;
Park, Y. M.; Jeong, B.; Sohn, Y. S. Thermosensitive and
Biocompatible Cyclotriphosphazene Micelles. J. Control. Release
[29] Wang, N.; Ma, W. J.; Ren, Z. Q.; Du, Y. C.; Xu, P.; Han, X. J.
Prussian Blue Analogues Derived Porous Nitrogen-Doped
Carbon Microspheres as High-Performance Metal-Free
Peroxymonosulfate Activators for Non-Radical-Dominated
Degradation of Organic Pollutants. J. Mater. Chem. A 2018, 6,
[12] Wang, D.; Feng, X. M.; Zhang, L. P.; Li, M.; Liu, M. M.; Tian,
A. L.; Fu, S. H. Cyclotriphosphazene-Bridged Periodic
Mesoporous Organosilica-Integrated Cellulose Nanofiber
Anisotropic Foam with Highly Flame-Retardant and Thermally
Insulating Properties. Chem. Eng. J. 2019, 375, 121933. DOI:
[13] Okutan, E.; Eserci, H.; S¸enkuytu, E. New Perylenebisimide
Decorated Cyclotriphosphazene Heavy Atom Free Conjugate as
Singlet Oxygen Generator. Spectrochim. Acta A 2019, 222,
[14] Yildirim, T.; Bilgin, K.; Ciftci, G. Y.; Ecik, E. T.; Senkuytu, E.;
Uludag, Y.; Tomak, L.; Kilic, A. Synthesis, Cytotoxicity and
Apoptosis of Cyclotriphosphazene Compounds as Anti-Cancer
Agents. Eur. J. Med. Chem. 2012, 52, 213–220. DOI: 10.1016/j.
[15] Gleria, M.; Jaeger, R. D. Applicative Aspects of
Cyclophosphazenes; Nova Science Publishers: New York, 2004.
[16] Bovin, J. O.; Galy, J.; Labarre, J. F.; Sournies, F.
Cyclophosphazenes as Novel Potential Anti-Tumor Agents -