J . Org. Chem. 1998, 63, 4587-4593
4587
Rea ction s of Micr ow a ve-Gen er a ted O(3P ) Atom s w ith Un sa tu r a ted
Hyd r oca r bon s
D. D. Tanner,*,1 P. Kandanarachchi,2 N. C. Das,1 M. Brausen,3 C. T. Vo,3
D. M. Camaioni,2 and J . A. Franz*,2
Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada, and
Pacific Northwest National Laboratory, Richland, Washington 99352
Received November 13, 1997
The reactions of neat olefins or solutions of olefins in acetone at low temperature with oxygen
atoms were examined. O(3P) atoms were produced by microwave irradiation of He/O2 mixtures,
followed by contact of the plasma with the fluid at low pressure and temperature. Addition of
oxygen atoms to olefins results in skeletal rearrangements involving hydrogen and alkyl migration
reactions and ring rearrangements of the intermediate oxygen adducts in competition with epoxide
formation. While epoxide formation predominates for simple olefins such as 1- and 4-octene with
minor yields of rearrangement products, for highly substituted or strained olefins, such as
norbornadiene, skeletal rearrangement dominates following oxygen atom addition. When oxidation
of norbornadiene is carried out in the presence of a radical inhibitor to suppress secondary oxidation
leading to benzene, the novel ring-rearrangement product, bicyclo[3.2,31.0]hex-3-ene-endo-6-
carboxaldehyde, is produced from norbornadiene in significant yields.
In tr od u ction
show deep-seated fragmentation and rearrangements of
substrates, indicative of energetically enriched interme-
diates.
It is clear from our previous work on the solution-phase
reactions of atomic (H•)4 and more complex radical species
(CH3 ) formed using a microwave discharge that the
A number of studies that generate ground-state oxy-
gen, O(3P), have reported reactions carried out in the
condensed phase or on solid surfaces.9-11 The liquid-phase
reactions have been carried out using γ-irradiation of
substrates dissolved in liquid CO2,8 by the microwave
discharge of CO2,10 with oxygen atoms generated by an
O2/He plasma,11 or with a plasma formed from a mixture
of N2 and N2O.12
The mechanism proposed for the addition of O(3P)
atoms to an olefin was shown to proceed via a triplet
diradical since cis- or trans-stilbene yielded both cis- and
trans-stilbene oxide as well as benzyl phenyl ketone.9a,b
The use of a O2/He plasma to generate O(3P) atoms has
been questioned since the reactive species produced by
the plasma were possibly contaminated with O2, O2(1Σg),
or O3.9i When O(3P) atoms were generated using a
microwave discharge of O2/He, the product ratios formed
• 5
conditions produce thermalized reactants whose products
are the result of the reactions of the primary intermedi-
ates. Kinetic studies show that addition of oxygen to
olefins at room temperature is nearly diffusion-controlled,
whereas hydrogen abstraction is more than a factor of
103 slower per hydrogen than addition to an olefin.6
Thus, low temperatures will further enhance selectivity
for addition, in addition to producing thermalized inter-
mediates. A number of publications have reported the
vapor- phase reactions of atomic oxygen, O(3P) generated
by the mercury-photosensitized decomposition of nitrous
oxide7 or by a microwave plasma promoted by O2/He at
low pressures.8 The vapor-phase reactions in general
(1) Department of Chemistry, University of Alberta
(2) Pacific Northwest National Laboratory, Richland, WA 99352.
(3) NRC Summer Student Research Fellow, 1993.
(8) (a) Bell, A. T. In Techniques and Applications of Plasma
Chemistry; Hollahan, J . R., Bell, A. T., Eds.; Wiley-Interscience: New
York, 1974; Chapter 1, pp 1-55. (b) Sato, S.; Cvetanovic, R. J . Can. J .
Chem. 1959, 37, 953. (c) Cvetanovic, R. J . Can. J . Chem. 1960, 38,
1678. (d) Huie, R. E.; Herron, J . T. Int. J . Chem. Kinet. 1972, 4, 521.
(9) (a) Sakurai, H.; Akimoto, K.; Toki, S.; Takamuku, S. Chem. Lett.
1975, 469. (b) Goto, S.; Hori, A.; Takamuku, S.; Sakurai, H. Bull. Chem.
Soc. J pn. 1976, 49, 2965. (c) Hirokami, S.; Wojnarovits, L.; Sato, S.
Bull Chem. Soc. J pn. 1979, 52, 299. (d) Karawawa, H.; Samamoto, T.;
Yugeta, R.; Sato, S. Bull. Chem. Soc. J pn. 1979, 52, 902.
(10) (a) Zadok, E.; Amar, D.; Mazur, Y. J . Am. Chem. Soc. 1980,
102, 6369. (b) Zadok, E.; Sialom, B.; Mazur, Y. Angew. Chem., Int. Ed.
Engl. 1980, 19, 1004. (c) Zadok, E.; Mazur, Y. Tetrahedron Lett. 1980,
21, 4955. (d) Zadok, E.; Mazur, Y. J . Org. Chem. 1982, 47, 2233. (e)
Zadok, E.; Rubinraut, S.; Mazur, Y. Isr. J . Chem. 1983, 23, 457. (f)
Zadok, E.; Aronovitch, C.; Mazur, Y. Nouv. J . Chim. 1982, 6, 699. (g)
Zadok, E.; Rubinraut, S.; Frolow, F.; Mazur, Y. J . Am. Chem. Soc. 1985,
107, 2489. (h) Zadok, E.; Rubinraut, S.; Frolow, F.; Mazur, Y. J . Org.
Chem. 1985, 50, 2647. (i) Zadok, E.; Rubinraut, S., Mazur, Y. J . Org.
Chem. 1987, 52, 385.
(4) (a) Tanner, D. D.; Zhang, L. J . Am. Chem. Soc. 1994, 116, 6683.
(b) Tanner, D. D.; Zhang, L.; Vigneswaran, M.; Kandanarachchi, P. J .
Org. Chem. 1995, 60, 4481. (c) Tanner, D. D.; Zhang, L.; Kandan-
arachchi, P. J . Phys. Chem. 1996, 100, 11319. (d) Tanner, D. D.; Zhang,
L.; Hu, L. Q.; Kandanarachchi, P. J . Org. Chem. 1996, 61, 6818. (e)
Tanner, D. D.; Koppula, S.; Kandanarachchi, P. J . Org. Chem. 1997,
62, 4210.
(5) Final Report CANMET Contract No. 23440-4-1053/01-SQ.
(6) Bucher, G.; Scaiano, J . C. J . Phys. Chem. 1994, 98, 12471-1.
For example, cyclopentene reacts with O(3P) at 1.6 × 1010 M-1 s-1 at
room temperature in acetonitrile, compared to cyclopentane, 3.8 × 108
M-1 s-1, both rate constants on a per molecule basis.
(7) (a) Cvetanovic, R. J . Adv. Photochem. 1963, 1, 115. (b) Cvet-
anovic, R. J .; Ring, D. F.; Doyle, L. C. J . Phys. Chem. 1971, 75, 3056.
(c) Atkinson, R.; Cvetanovic, R. J . J . Chem. Phys. 1971, 55, 659. (d)
Hirokami, S.; Cvetanovic, R. J . J . Am. Chem. Soc. 1974, 96, 3738. (e)
Singleton, D. L.; Cvetanovic, R. J . J . Am. Chem. Soc. 1974, 96, 6812.
(f) Gaffney, J . S.; Atkinson, R.; Pitts, J . N., J r. J . Am. Chem. Soc. 1976,
98, 1828. (g) Havel, J . J . J . Am. Chem. Soc. 1974, 96, 530. (h) Havel,
J . J .; Chamberlain, W. T.; Krautter, P. M. J . Am. Chem. Soc. 1974,
96, 632. (i) Havel, J . J .; Chan, K. H. J . Org. Chem. 1974, 39, 2439; J .
Am. Chem. Soc. 1975, 97, 5800. (j) Havel, J . J . J . Org. Chem. 1978,
43, 762.
(11) (a) Sato, S.; Cvetanovic, R. J . Can. J . Chem. 1959, 37, 529. (b)
Cvetanovic, R. J . Can. J . Chem. 1960, 38, 1678. (c) Huie, R. E.; Herron,
J . T. Int. J . Chem. Kinet. 1972, 4, 521.
(12) Ung, A. Y. M. Chem. Phys. Lett. 1975, 32, 351.
S0022-3263(97)02083-5 CCC: $15.00 © 1998 American Chemical Society
Published on Web 06/17/1998