Journal of Physical Chemistry B p. 6921 - 6928 (1997)
Update date:2022-08-11
Topics:
Cozens, Frances L.
Bogdanova, Roumiana
Régimbald, Michèle
García, Hermenegildo
Martí, Vinente
Scaiano
Laser flash photolysis of a series of substituted styrenes embedded within the cavities of the large pore zeolite NaY leads to the formation of the corresponding styrene radical cation. The reactivity and spectra of these radical cations embedded within NaY are examined and compared to the reactivity of the same radical cations in solution. It is found that for the highly reactive parent styrene radical cation the zeolite framework provides a strong stabilizing effect. For the 4-methoxy-substituted styrene radical cation the zeolite framework plays less of a role in stabilizing the radical cation as compared to the reactivity of the same radical cation in acetonitrile solution. Rigorous analysis of the thermal stability of 4-methoxystyrene, 4-methylstyrene, and anethole in the zeolite micropores was carried out using two sources of NaY zeolite (Aldrich and The PQ Corporation). It was found that the thermal stability was surprisingly dependent on the source of the NaY zeolite. 4-Methoxystyrene, 4-methylstyrene, and anethole were thermally stable in NaY (Aldrich) but rapidly dimerized in NaY (PQ) upon incorporation with dichloromethane. We observed the formation of the same type of dimers not only for 4-methoxystyrene but also for 4-methylstyrene and anethole. In addition, 4-methoxystyrene was incorporated into a series of different acid zeolites (HZSM-5, HMordenite, HBeta, and HY) varying in the shape and size of their micropores where rapid thermal protonation occurs. Dimerization of the thermally formed 4-methoxyphenethyl cation with a neutral molecule of 4-methoxystyrene took place within all the acid zeolites examined. The generation of this secondary 1,3-bis(4-methoxyphenyl)-1-butylium ion was clearly observed in the medium pore ZSM-5. This carbocation was found to be thermally unstable in the acidic environment provided by the four acidic zeolites and underwent a proton and hydride transfer to form the more stable allylic 1,3-bis(4-methoxyphenyl)buten-1-ylium cation. In the large round cavities of HY a competing cyclization reaction took place which led to the formation of the 3-methyl-5-methoxy-1,4-methoxyphenylindanyl cation.
View MoreShanghai better-in Medical Technology Co.,LTD.
Contact:+86-21-38921049
Address:Lane 720 zhangjianggaoke cailun road, Pudong, Shanghai, room 513
Hangzhou Ledun Technology Co.,Ltd.
Contact:86-571-18767088918
Address:No.6 street,XiaSha,Hangzhou,China.
Changde Yungang Biotechnology Co., Ltd
website:http://www.cdyg.com
Contact:+86-736-7391178
Address:Qiaonan Industrial Park, Changde City, Hunan Province
Rizhao Lanxing Chemical Indusrial Co.,Ltd
Contact:86-633-2616708
Address:NO.15 West road Shenglan, Lanshan district, Rizhao City
Wuhan Hanye Chemical New Material Co.,Ltd
Contact:+86-27-85308141
Address:LiuDian, Panlongcheng Economic Development Zone, HuangPi district, Wuhan, Hubei 430311 P.R.China
Doi:10.3390/molecules24193484
(2019)Doi:10.1021/acs.orglett.8b01218
(2018)Doi:10.1021/ja068915m
(2007)Doi:10.1023/B:RUJO.0000003173.53811.60
(2003)Doi:10.1016/j.materresbull.2012.04.083
(2012)Doi:10.1021/acs.analchem.9b00396
(2019)