10.1002/chem.201604783
Chemistry - A European Journal
FULL PAPER
Crowley, S. M. Goldup, A. L. Lee, D. A. Leigh, R. T. McBurney, Chem.
Soc. Rev. 2009, 38, 1530−1541; c) D. Thibeault, J. F. Morin, Molecules
2010, 15, 3709−3730; d) K. D. Hanni, D. A. Leigh, Chem. Soc. Rev.
2010, 39, 1240−1251; e) J. E. Beves, B. A. Blight, C. J. Campbell, D. A.
Leigh, R. T. McBurney, Angew. Chem. Int. Ed. 2011, 50, 9260−9327; f)
R. J. Bordoli, S. M. Goldup, J. Am. Chem. Soc. 2014, 136, 4817−4820.
a) J. Li, Y. Li, Y. Guo, J. Xu, J. Lv, Y. Li, H. Liu, S. Wang, D. Zhu, Chem.
Asian J. 2008, 3, 2091−2096; b) C. Schäfer, G. Ragazzon, B. Colasson,
M. La Rosa, S. Silvi, A. Credi, Chemistry Open 2016, 5, 120−124.
a) S. S. Zhu, P. J. Carroll, T. M. Zwager, J. Am. Chem. Soc. 1996, 118,
8713−8714; b) N. H. Evans, P. D. Beer, Angew. Chem. Int. Ed. 2014,
53, 11716-11754; c) M. J. Langton, P. D. Beer, Acc. Chem. Res. 2014,
47, 1935−1949.
the higher the quantum yield ratio in favor of the minor
(metastable) co-conformation, the more sensitive the
measurement. Also, the deconvolution of the emission decay is
facilitated if the difference between the lifetimes attributed to the
two co-conformations is significant. For the case reported here,
K values of ~103 with an upper limit estimated at ~104 could be
measured. Last but not least, to gain information on the co-
conformational equilibrium distribution the emission decay
should be faster than the ring shuttling. This requirement is
easily fulfilled with organic fluorophores, whose fluorescence
lifetimes (~ns) are much shorter than typical ring shuttling times
(~µs-ms).[27,28]
On the contrary, the acid-base assay does not rely on the
photophysical properties of the system (as long as there is an
analytical signal to be monitored in the titrations) and its
sensitivity is limited only by experimental considerations – for
instance, the availability of the suitable bases whose pKa values
in the solvent of choice are reported. The results of these
experiments, summarized in Figure 5, not only show that the
investigated rotaxane is a highly efficient molecular shuttle, but
also indicate that the affinity of the (pH-insensitive) tria+ station
for the DB24C8 ring influences the acid-base behavior of the
amm+ station. This observation is highly interesting because, in
principle, it enables the use of programmed allosteric effects to
bring about predetermined acid-base properties in artificial
multicomponent systems.
[3]
[4]
[5]
[6]
J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-
Halperin, E. Delonno, Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin, H. R.
Tseng, J. F. Stoddart, J. R. Heat, Nature 2007, 445, 414−417.
a) D. A. Leigh, V. Marcos, M. R. Wilson, ACS Catalysis 2014, 4,
4490−4497; b) E. A. Neal, S. M. Goldup, Chem. Commun. 2014, 50,
5128−5142; c) V. Blanco, D. A. Leigh, V. Marcos, Chem. Soc. Rev.
2015, 44, 5341−5370.
[7]
[8]
M. N. Chatterjee, E. R. Kay, D. A. Leigh, J. Am. Chem. Soc. 2006, 128,
4058−4073.
A. H. Flood, A. J. Peters, S. A. Vignon, D. W. Steuerman, H. R. Tseng,
S. Kang, J. R. Heath, J. F. Stoddart, Chem. Eur. J. 2004, 10,
6558−6564.
[9]
a) E. Busseron, C. Romuald, F. Coutrot, Chem. Eur. J. 2010, 16,
10062-10073; b) C. Romuald, E. Busseron, F. Coutrot, J. Org. Chem.
2010, 75, 6516-6531.
[10] a) A. Altieri, F. G. Gatti, E. R. Kay, D. A. Leigh, D. Martel, F. Paolucci, A.
M. Z. Slawin, J. K. Y. Wong, J. Am. Chem. Soc. 2003, 125, 8644-8654;
b) F. Scarel, G. Valenti, S. Gaikwad, M. Marcaccio, F. Paolucci, A.
Mateo-Alonso, Chem. Eur. J. 2012, 18, 14063-14068.
The two methods presented in this work expand the toolbox
for the characterization of the thermodynamic behavior of
bistable interlocked compounds and related species exhibiting a
pH-dependent behavior. The information that can be accessed
with these experimental approaches is essential for a detailed
understanding of the switching mechanism and for assisting the
design of new molecular devices and machines.
[11] a) J. W. Choi, A. H. Flood, D. W. Steuerman, S. Nygaard, A. B.
Braunschweig, N. N. P. Moonen, B. W. Laursen, Y. Luo, E. Delonno, A.
J. Peters, J. O. Jeppesen, K. Xe, J. F. Stoddart, J. R. Heath, Chem. Eur.
J. 2006, 12, 261−279. b) A. C. Fahrenbach, J. C. Barnes, H. Li, D.
Benitez, A. N. Basuray, L. Fang, C. H. Sue, G. Barin, S. K. Dey, W. A.
Goddard III, J. F. Stoddart, Proc. Natl. Acad. Sci. U. S. A. 2011, 108,
20416−20421; c) A. C. Fahrenbach, C. J. Burns, D. Cao, J. F. Stoddart,
Acc. Chem. Res. 2012, 45, 1581−1592.
Acknowledgements
[12] For examples of the application of time-resolved luminescence to the
study of supramolecular dynamics, see e.g.: a) C. Bohne, Chem. Soc.
Rev. 2014, 43, 4037-4050; b) V. Balzani, P. Ceroni, A. Juris,
Photochemistry and Photophysics: Concepts, Research, Applications,
Wiley-VCH, Weinheim, 2014.
B.C. thanks the Centre National de la Recherche Scientifique
(CNRS) and the Université Paris Descartes, Sorbonne Paris
Cité for a “délégation”. This work was supported by the Ministero
dell’Istruzione, dell’Università e della Ricerca (PRIN project
“InfoChem”) and the University of Bologna (FARB project
“SLaMM”).
[13] F. Coutrot, ChemistryOpen 2015, 4, 556−576 and references cited
therein.
[14] a) F. Coutrot, E. Busseron, Chem. Eur. J. 2008, 14, 4784−4787; b) F.
Coutrot, C. Romuald, E. Busseron, Org. Lett. 2008, 10, 3741−3744; c)
C. Romuald, A. Arda, C. Clavel, J. Jimenez-Barbero, F. Coutrot, Chem.
Sci. 2012, 3, 1851−1857; d) V. Blanco, A. Carlone, K. D. Hänni, D. A.
Leigh, B. Lewandowski, Angew. Chem., Int. Ed. 2012, 51, 5166−5169;
e) E. Busseron, F. Coutrot, J. Org. Chem. 2013, 78, 4099−4106; f) Z. J.
Zhang, M. Han, H. Y. Zhang, Y. Liu, Org. Lett. 2013, 15, 1698–1701; g)
S. Chao, C. Romuald, K. Fournel-Marotte, C. Clavel, F. Coutrot, Angew.
Chem. Int. Ed. 2014, 53, 6914−6919; h) V. Blanco, D. A. Leigh, U.
Lewandowska, B. Lewandowski, V. Marcos, J. Am. Chem. Soc. 2014,
136, 15775−15780; i) V. Blanco, D. A. Leigh, V. Marcos, J. A. Morales-
Serna, A. L. Nussbaumer, J. Am. Chem. Soc. 2014, 136, 4905−4908; j)
Z. Meng, C. F. Chen, Chem. Commun. 2015, 51, 8241–8244; k) Z.
Meng, Y. Han, L. N. Wang, J. F. Xiang, S. G. He, C. F. Chen, J. Am.
Chem. Soc. 2015, 137, 9739–9745; l) P. Waelès, B. Riss-Yaw, F.
Coutrot, Chem. Eur. J. 2016, 22, 6837−6845.
Keywords: molecular device • molecular machine • rotaxane •
fluorescence • acidity • supramolecular chemistry • nanoscience
[1]
a) W. R. Browne, B. L. Feringa, Nat. Nanotechnol. 2006, 1, 25-35; b) E.
R. Kay, D. A. Leigh, F. Zerbetto, Angew. Chem. Int. Ed. 2007, 46,
72−191; c) V. Balzani, A. Credi, M. Venturi, Molecular Devices and
Machines – Concepts and Perspectives for the Nanoworld, Wiley-VCH,
Weinheim, 2008; d) A. Coskun, J. M. Spruell, G. Barin, W. R. Dichtel, A.
H. Flood, Y. Y. Botros, J. F. Stoddart, Chem. Soc. Rev. 2012, 41,
4827−4859; e) S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan, A. L.
Nussbaumer, Chem. Rev. 2015, 115, 10081−10206. f) M. Xue, Y. Yang,
X. Chi, X. Yan, F. Huang, Chem. Rev. 2015, 115, 7398−7501.
[2]
a) F. Aricò, J. D. Badjić, S. J. Cantrill, A. H. Flood, K. C. F. Leung, Y.
Liu, J. F. Stoddart, Top. Curr. Chem. 2005, 249, 203−259; b) J. D.
[15] A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc., Chem.
Commun. 1995, 1289–1291.
This article is protected by copyright. All rights reserved.