Paper
RSC Advances
Pd-3. Next, an H–H bond cleavage occurs in a rate-determining
8 F. Harraz, S. El-Hout, H. Killa and I. Ibrahim, J. Catal., 2012,
286, 184–192.
9 S. Cai, H. Duan, H. Rong, D. Wang, L. Li, W. He and Y. Li,
ACS Catal., 2013, 3, 608–612.
51
step to give the [Pd]–H species. Such species are responsible
for the rapid reduction of nitroarenes into the corresponding
anilines. It is proposed that the high catalytic activity of Pd-3 for
hydrogenation of nitroarenes is due to the synergistic effect 10 M. M. Dell'Anna, V. Gallo, P. Mastrorilli and G. Romanazzi,
between Pd and PdO crystallographic plane.
Molecules, 2010, 15, 3311–3318.
1
1
1
1
1 T. Subramanian and K. Pitchumani, ChemCatChem, 2012, 4,
1917–1921.
Conclusions
2 X. Liu, S. Ye, H.-Q. Li, Y.-M. Liu, Y. Cao and K.-N. Fan, Catal.
Sci. Technol., 2013, 3, 3200–3206.
3 J. H. Kim, J. H. Park, Y. K. Chung and K. H. Park, Adv. Synth.
Catal., 2012, 354, 2412–2418.
4 M. B. Gawande, A. K. Rathi, P. S. Branco, I. D. Nogueira,
A. Velhinho, J. J. Shrikhande, U. U. Indulkar,
R. V. Jayaram, C. A. A. Ghumman and N. Bundaleski,
Chem.–Eur. J., 2012, 18, 12628–12632.
In conclusion, we have developed an environmentally-friendly
approach to controllable synthesis of different ratios Pd/PdO
nanoparticles functionalized OCNTs for the rst time by the
GLIP method through adjusting plasma parameter with
Pd(NO ) $2H O as a precursor. The Pd/PdO nanoparticles as
3
2
2
a new kind catalyst is applied in reduction of 4-nitrophenol
4-NP) in water by NaBH . The turn over frequency (TOF) value is
(
4
ꢀ1
15 F. Yuan, Y. Ni, L. Zhang, S. Yuan and J. Wei, J. Mater. Chem.
A, 2013, 1, 8438–8444.
up to 3000 h , showing much higher catalytic activity than Pd
nanoparticles. The catalysts with different Pd/PdO ratios
signicantly affect the catalytic activity. Moreover, the catalyst
demonstrates high catalytic activities for hydrogenation of
1
1
1
1
2
6 G. Evdokimova, S. Zinovyev, A. Perosa and P. Tundo, Appl.
Catal., A, 2004, 271, 129–136.
7 Q. Shi, R. Lu, L. Lu, X. Fu and D. Zhao, Adv. Synth. Catal.,
nitroarenes in water with atmosphere pressure H . The as-
2
2007, 349, 1877–1881.
prepared catalysts display remarkable activity toward various
nitroarenes by using low Pd loading in good yields. In addition,
the catalyst can be simply and efficiently used for ten consec-
utive runs without signicant decrease in activity. Further work
is in progress to extend such kind of catalyst for other
applications.
8 D. Cantillo, M. M. Moghaddam and C. O. Kappe, J. Org.
Chem., 2013, 78, 4530–4542.
9 S. Pagoti, S. Surana, A. Chauhan, B. Parasar and J. Dash,
Catal. Sci. Technol., 2013, 3, 584–588.
0 R. K. Rai, A. Mahata, S. Mukhopadhyay, S. Gupta, P.-Z. Li,
K. T. Nguyen, Y. Zhao, B. Pathak and S. K. Singh, Inorg.
Chem., 2014, 53, 2904–2909.
Acknowledgements
21 F. Li, B. Frett and H.-Y. Li, Synlett, 2014, 25, 1403–1408.
2
2
2
2
2
2 R. J. Rahaim and R. E. Maleczka, Org. Lett., 2005, 7, 5087–
This work was supported by National Natural Science Founda-
tion of China (No. 21202203, 21576289 and 21322609), Science
Foundation Research Funds Provided to New Recruitments of
China University of Petroleum, Beijing (No. YJRC-2013-31),
Science Foundation of China University of Petroleum, Beijing
5090.
3 Y. Sunada, H. Kawakami, T. Imaoka, Y. Motoyama and
H. Nagashima, Angew. Chem., 2009, 121, 9675–9678.
4 L. Li, Z. Chen, H. Zhong and R. Wang, Chem.–Eur. J., 2014,
20, 3050–3060.
(No. 2462015YQ0306, 2462014QZDX01), Thousand Talents
5 A. K. Shil, D. Sharma, N. R. Guha and P. Das, Tetrahedron
Lett., 2012, 53, 4858–4861.
6 I. Pogoreli ´c , M. Filipan-Litvi ´c , S. Merka ˇs , G. Ljubi ´c ,
I. Cepanec and M. Litvi ´c , J. Mol. Catal. A: Chem., 2007, 274,
Program and National High-tech R&D Program of China (863
Program, No. 2015AA034603).
2
02–207.
References
2
7 A. Chinnappan and H. Kim, RSC Adv., 2013, 3, 3399–3406.
1
H. Pelc, B. Elvers and S. Hawkins, Ullmann's Encyclopedia of 28 I. Tamiolakis, S. Fountoulaki, N. Vordos, I. N. Lykakis and
Industrial Chemistry, Wiley-VCH, Verlag GmbH & Co. KGaA,
005.
H. Keypour, M. Noroozi, A. Rashidi and M. Shariati Rad, Iran.
J. Chem. Chem. Eng., 2015, 34, 21–32.
G. S. Armatas, J. Mater. Chem. A, 2013, 1, 14311–14319.
29 K. Layek, M. L. Kantam, M. Shirai, D. Nishio-Hamane,
T. Sasaki and H. Maheswaran, Green Chem., 2012, 14,
3164–3174.
2
2
3
4
5
6
M. Xie, F. Zhang, Y. Long and J. Ma, RSC Adv., 2013, 3, 10329– 30 L. Liu, B. Qiao, Z. Chen, J. Zhang and Y. Deng, Chem.
0334. Commun., 2009, 653–655.
J. Lyu, J. Wang, C. Lu, L. Ma, Q. Zhang, X. He and X. Li, 31 X.-J. Yang, B. Chen, L.-Q. Zheng, L. Z. Wu and C. H. Tung,
J. Phys. Chem. C, 2014, 118, 2594–2601.
Green Chem., 2014, 16, 1082–1086.
K. M ¨o bus, E. Gr u¨ newald, S. Wieland, S. Parker and P. Albers, 32 M.-O. Simon and C.-J. Li, Chem. Soc. Rev., 2012, 41, 1415–
J. Catal., 2014, 311, 153–160.
1427.
M. Tur ´a kov ´a , M. Kr ´a lik, P. Lehock ´y , L. Pikna, M. Smrcova, 33 T. Liu, F. Yang, Y. Li, L. Ren, L. Zhang, K. Xu, X. Wang, C. Xu
1
ˇ
ˇ ´
D. Remeteiov ´a and A. Hud ´a k, Appl. Catal., A, 2014, 476,
03–112.
A. J. Amali and R. K. Rana, Green Chem., 2009, 11, 1781–1786.
and J. Gao, J. Mater. Chem. A, 2014, 2, 245–250.
34 L. Ren, F. Yang, Y. Li, T. Liu, L. Zhang, G. Ning, Z. Liu, J. Gao
and C. Xu, RSC Adv., 2014, 4, 26804–26809.
1
7
This journal is © The Royal Society of Chemistry 2016
RSC Adv., 2016, 6, 52620–52626 | 52625