LETTER
Synthesis of Pyrrolobenzodiazepines
1299
(12) Wright, W. B.; Brabander, H. J.; Greenblatt, E. N.; Day, I.
P.; Hardy, R. A. J. Med. Chem. 1978, 21, 1087.
(13) Di Martino, G.; Massa, S.; Corelli, F.; Pantaleoni, G.; Fanini,
D.; Palumbo, G. Eur. J. Med. Chem. 1983, 18, 347.
(14) Karp, G. M.; Manfredi, M. C.; Guaciaro, M. A.; Ortlip, C.
L.; Marc, P.; Szamosi, I. T. J. Agric. Food Chem. 1997, 45,
493.
(15) (a) Kaneko, T.; Wong, H.; Doyle, T. W. J. Antibiotics 1984,
37, 300. (b) Kamal, A.; Reddy, B. S. P.; Reddy, B. S. N.
Tetrahedron Lett. 1996, 37, 2281. (c) Jones, G. B.; Davey,
C. L.; Jenkins, T. C.; Kamal, A.; Kneale, G.; Neidle, S.;
Webster, G. D.; Thurston, D. E. Anti-Cancer Drug Des.
1990, 5, 249. (d) Kaneko, T.; Wong, H.; Doyle, T. W.
Tetrahedron Lett. 1983, 24, 5165.
have been employed as intermediates in the synthesis of
naturally occurring and synthetically modified PBD imi-
nes such as tomaymycin and chicamycin.15 They are also
useful precursors for the PBD cyclic secondary amines16
which can be converted into PBD imines by mild oxida-
tion.17 Their importance as intermediates for a wide range
of biologically active compounds, such as psychomotor
depressant activity18a–c and sedative activity18d has been
extensively investigated. The substrates 5a–j have been
converted into its lactams 6a–j in the presence of
BF3·OEt2 and NaI by intramolecular azido-reductive cy-
clization process to give excellent yields as shown in
Table 3.
(16) Kamal, A.; Howard, P. W.; Reddy, B. S. N.; Reddy, B. S. P.;
Thurston, D. E. Tetrahedron 1997, 53, 3223.
In summary, we have demonstrated an efficient, mild,
cost-effective, and ecofriendly protocol for the reduction
of azido functionality. Additionally, this method has been
successfully applied to the efficient synthesis of pharma-
cologically important nitrogen-containing heterocycles,
such as pyrrolobenzodiazepine analogues through the in-
tramolecular azido-reductive cyclization process employ-
ing this reagent system.
(17) (a) Thurston, D. E.; Bose, D. S. Chem. Rev. 1994, 94, 433.
(b) Kamal, A.; Rao, M. V.; Reddy, B. S. N. Khim.
Geterotsikl. Soedin. (Chem. Heterocycl. Compd.) 1998,
1588. (c) Kamal, A.; Rao, N. V. Chem. Commun. 1996, 385.
(18) (a) Carbateas, P. M. US 3,732,212, 1973; Chem. Abstr.
1973, 79, P42570x. (b) Carbateas, P. M. US 3,763,183,
1973; Chem. Abstr. 1973, 79, P146567t. (c) Carbateas, P.
M. US 3,860,600, 1975; Chem. Abstr. 1975, 83, P58892x.
(d) Reddy, B. S. P. PhD Thesis; Osmania University: India,
1995.
(19) General Procedure for Azido Reductions
Acknowledgment
The substituted aromatic azides were dissolved in MeCN (15
mL), BF3·OEt2 (2.0 equiv), NaI (50 mol%) was added and
then solvent stirred at r.t. for 10–80 min to afford reductively
cyclized products. The reaction mixture was quenched with
aq Na2S2O3 followed by neutralization with aq NaHCO3
soln. The mixture was extracted with EtOAc (3 × 35 mL)
and the combined organic extracts dried over anhyd Na2SO4.
The solvent was evaporated under vacuum and the residue
purified by column chromatography through SiO2 (60–120
mesh) eluting with EtOAc–hexane (yields as shown in
Tables 1–3).
The authors N.S. and N.M.K. are grateful to CSIR, New Delhi, for
the award of Research Fellowships.
References and Notes
(1) Scriven, E. F. V.; Turnbull, K. Chem. Rev. 1988, 88, 297.
(2) Smith, S. C.; Heathcock, C. H. J. Org. Chem. 1992, 57,
6379.
(3) McDonald, F. E.; Danishefsky, S. J. J. Org. Chem. 1992, 57,
7001.
(4) (a) Ito, M.; Koyakumaru, K.; Takaya, T. H. Synthesis 1995,
376. (b) Rao, H. S. P.; Siva, P. Synth. Commun. 1994, 24,
549. (c) Alverez, S. G.; Fisher, G. B.; Singavam, B.
Tetrahedron Lett. 1995, 36, 2567. (d) Molina, P.; Diaz, I.;
Tarraga, A. Tetrahedron 1995, 51, 5617. (e) Ramesha, A.
R.; Bhat, S.; Chandrasekaran, S. J. Org. Chem. 1995, 60,
7682. (f) Capperucci, A.; Degl’Innocenti, A.; Funicello, M.;
Mauriello, G.; Scafato, P.; Spagnolo, P. J. Org. Chem. 1995,
60, 2254. (g) Kamal, A.; Reddy, B. S. P.; Reddy, B. S. N.
Tetrahedron Lett. 1996, 37, 6803. (h) Huang, Y.; Zhang, Y.;
Wang, Y. Tetrahedron Lett. 1997, 38, 1065.
(20) Selected Data
Compound 2h: 1H NMR (200 MHz, CDCl3): d = 7.35–7.45
(m, 5 H), 7.22 (s, 1 H), 6.15 (s, 1 H), 5.47–5.90 (br s, 2 H),
5.20 (s, 2 H), 3.84 (s, 3 H), 3.83 (s, 3 H). MS (EI): m/z = 287
[M+].
Compound 4a: 1H NMR (200 MHz, CDCl3): d = 8.05 (d,
J = 7.43 Hz, 1 H), 7.79 (d, J = 4.46 Hz, 1 H), 7.53 (t, J = 6.69
Hz, 1 H), 7.28–7.38 (m, 2 H), 3.36–3.94 (m, 3 H), 2.26–2.38,
(m, 2 H), 2.02–2.16 (m, 2 H). MS (EI): m/z = 200 [M+].
[a]D26 +343 (c 0.4, CHCl3).
Compound 4b: 1H NMR (400 MHz, CDCl3): d = 8.00–8.05
(m, 1 H), 7.00–7.80 (m, 1 H), 7.40–7.60 (m, 1 H), 7.20–7.30
(m, 1 H), 3.40–3.90 (m, 3 H), 1.90–2.50 (m, 7 H). MS (EI):
m/z = 214 [M+].
(5) Molander, G. A. Chem. Rev. 1992, 92, 29.
(6) (a) Kamal, A.; Rao, M. V.; Laxman, N.; Ramesh, G.; Reddy,
G. S. K. Curr. Med. Chem.: Anti-Cancer Agents 2002, 2,
215. (b) Kamal, A.; Reddy, K. L.; Devaiah, V.; Shankaraiah,
N.; Reddy, D. R. Mini-Rev. Med. Chem. 2006, 6, 53.
(c) Kamal, A.; Reddy, K. L.; Devaiah, V.; Shankaraiah, N.;
Rao, M. V. Mini-Rev. Med. Chem. 2006, 6, 71.
(7) Thurston, D. E. In Molecular Aspects of Anticancer Drug-
DNA Interactions, Vol. 1; Neidle, S.; Waring, M. J., Eds.;
The Macmillan Press Ltd: London, 1993, 54.
Compound 4e: 1H NMR (200 MHz, DMSO-d6): d = 7.84 (d,
1 H, J = 7.32), 7.12–7.26 (m, 1 H), 6.95 (d, 1 H, J = 5.01
Hz), 6.70–7.80 (m, 2 H), 4.92 (d, 1 H, J = 4.81 Hz), 4.17–
4.26 (m, 1 H), 4.02 (m, 1 H), 3.50–3.75 (m, 2 H), 1.95–2.10
(m, 1 H), 1.70–1.80 (m, 1 H). 13C NMR (50 MHz, DMSO-
d6): d = 166.5, 150.2, 144.6, 133.5, 131.7, 131.4, 128.6,
125.2, 71.0, 56.6, 52.0, 39.5. MS (EI): m/z 216 [M+]. HRMS:
m/z calcd for C12H12N2O2: 216.2358; found: 216.2361.
Compound 6a: 1H NMR (200 MHz, CDCl3): d = 9.22 (br s,
1 H), 7.96–8.08 (d, 1 H, J = 8.03 Hz), 7.42–7.58 (t, 1 H,
J = 8.03, 7.03 Hz), 7.21–7.28 (m, 1 H), 7.03–7.07 (d, 1 H,
J = 8.03 Hz), 4.05–4.09 (d, 1 H, J = 6.57 Hz), 3.75–3.86 (m,
1 H), 3.51–3.65 (m, 1 H), 2.71–2.82 (m, 1 H), 1.85–2.15 (m,
3 H). MS (EI): m/z = 216 [M+]. HRMS: m/z calcd for
C12H12N2O2: 216.2358; found: 216.2363.
(8) Thurston, D. E.; Bose, D. S. Chem. Rev. 1994, 94, 433.
(9) Kamal, A.; Shankaraiah, N.; Reddy, K. L.; Devaiah, V.
Tetrahedron Lett. 2006, 47, 4253.
(10) Kneko, T.; Wong, H.; Doyle, T. W.; Rose, W. C.; Brander,
W. T. J. Med. Chem. 1985, 28, 388.
(11) Blackburn, B. K.; Lee, A.; Baier, M.; Kohl, B.; Olivero, A.
G.; Matamoros, R.; Robarge, K. D.; McDowell, R. S. J. Med.
Chem. 1997, 40, 717.
Synlett 2008, No. 9, 1297–1300 © Thieme Stuttgart · New York