The Journal of Organic Chemistry
Article
(
hexanes/EtOAc, 9:1) to yield (−)-19 (0.1 g, 85%) as a pale yellow
85.4, 84.9, 58.7, 50.4, 48.3, 38.4, 32.5, 19.6, 17.9, 17.8. ESI-HRMS
−1
+
liquid. [α] = −35.9 (c = 0.3, CHCl ). IR (cm ) 2963, 2923, 2870,
1
δ 5.88−5.83 (m, 1H), 2.33−2.28 (m, 2H), 2.14 (dt, J = 12.0, 4.3 Hz,
1
8
2
1
MHz, CDCl ) δ 201.1, 161.3, 127.2, 85.8, 84.8, 58.3, 50.0, 48.9, 39.2,
3
HRMS calcd for C H O , 305.2481 [M + H] ; found, 305.2486.
calcd for C H O S, 295.1368 [M + H] ; found, 295.1368.
D
3
16 23
3
1
664, 1450, 1376, 1207, and 866. H NMR (400 MHz, chloroform-d)
24. (−)-{[(1R,2S,5R)-2-(3-Bromoprop-1-en-2-yl)-5-
methylcyclohexyl]oxy}(tert-butyl)dimethylsilane, (−)-14. By follow-
ing the same procedure for the preparation of (+)-14 (section 9),
(−)-14 (4.49 g, 86%) was prepared from commercially available
H), 1.93 (s, 3H), 1.90 (q, J = 4.3 Hz, 1H), 1.81 (dddd, J = 16.6, 12.8,
.2, 4.7 Hz, 3H), 1.63−1.49 (m, 3H), 1.41 (ddd, J = 12.4, 5.6, 2.3 Hz,
H), 1.34 (s, 3H), 1.32−1.28 (m, 3H), 1.27 (s, 3H), 1.19−1.13 (m,
H), 0.90 (d, J = 6.9 Hz, 3H), 0.81 (d, J = 6.8 Hz, 3H). 13C NMR (100
(−)-isopulegol (2.5 g, 16.1 mmol) as a colorless low-melting solid.
−1
[α]
= −86.31 (c = 2.0, CHCl
). IR (cm ) 2955, 2926, 2855, 1461,
D
3
1
1361, 1099, 1060, and 830. H NMR (500 MHz, chloroform-d) δ 5.24
(s, 1H), 4.99 (s, 1H), 4.08−3.98 (m, 2H), 3.48−3.42 (m, 1H), 2.06−
2.00 (m, 1H), 1.85 (ddt, J = 12.7, 4.1, 1.9 Hz, 1H), 1.80−1.75 (m,
1H), 1.67−1.62 (m, 1H), 1.50−1.44 (m, 1H), 1.36 (ddd, J = 13.2, 3.9,
1.3 Hz, 1H), 1.04 (tdd, J = 12.2, 10.7, 1.4 Hz, 2H), 0.92 (dd, J = 6.7,
3
4.2, 32.2, 31.2, 30.9, 30.2, 24.3, 22.7, 20.8, 19.4, 18.2, 15.9. ESI-
+
20
33
2
1
9. (−)-(1S,6R)-3-Methyl-6-{(S)-4-[(1R,2R,3R,4S)-1,3,4-trimethyl-7-
oxabicyclo[2.2.1]heptan-2-yl]butan-2-yl}cyclohex-2-enol, (−)-1. To
a solution of (−)-19 (0.08 g, 0.26 mmol) in methanol (5 mL) were
added CeCl (0.07 g, 1.1 mmol) and NaBH (0.005 g, 0.5 mmol) at
1
3
1.4 Hz, 3H), 0.83 (s, 9H), 0.01 (s, 3H), −0.06 (s, 3H). C NMR (125
MHz, CDCl ) δ 149.9, 114.0, 77.0, 49.2, 45.4, 40.0, 34.6, 31.9, 31.7,
3
4
3
−
20 °C, and stirring was continued for an additional 3 h at the same
26.0 (3C), 22.4, 18.1, −4.0, −4.6. ESI-HRMS calcd for C H BrOSi,
1
6
32
+
temperature. After completion of the reaction as monitored by TLC,
the reaction mixture was concentrated under reduced pressure and
purified by silica gel column chromatography (hexanes/EtOAc, 8:2) to
give the final compound (−)-laurenditerpenol, (−)-1, as a viscous
colorless liquid (46.7 mg, 58%). All the spectral data are matched with
347.1406 [M + H] ; found, 347.1406.
25. Alkylation with Allyl Bromide (−)-14. By following the same
procedure for the preparation of (+)-15a and (+)-15b (section 10),
(−)-15a (1.94 g, 68%) and (−)-15b (0.2 g, 7%) were prepared from
(+)-12 (1.5 g, 5.1 mmol) as viscous liquids.
1
reported data.
(−)-tert-Butyldimethyl{[(1R,2S,5R)-5-methyl-2-{(R)-4-(phenylsul-
2
0. (+)-(S)-4-Benzyl-3-[(1S,2S,3S,4R)-1,3,4-trimethyl-7-
fonyl)-4-[(1S,2S,3S,4R)-1,3,4-trimethyl-7-oxabicyclo[2.2.1]heptan-2-
oxabicyclo[2.2.1]heptane-2-carbonyl]oxazolidin-2-one, (+)-11. By
following the same procedure for the preparation of (+)-10 (section
4
yl]but-1-en-2-yl}cyclohexyl]oxy}silane, (−)-15a. [α] = −9.1 (c = 1.0,
D
−1
CHCl ). IR (cm ) 2958, 2926, 2855, 1446, 1305, 1145, 1060, and
832. H NMR (500 MHz, chloroform-d) δ 7.85 (dd, J = 8.2, 1.2 Hz,
3
1
), (+)-11 (6.0 g, 96%) was prepared from (+)-21b (8.0 g, 18.47
−1
mmol) as a white solid. [α]D = +31.5 (c = 0.9, CHCl ). IR (cm )
2H), 7.63−7.58 (m, 1H), 7.52 (dd, J = 8.3, 6.9 Hz, 2H), 4.99 (s, 1H),
4.88 (s, 1H), 3.48 (td, J = 10.2, 4.2 Hz, 1H), 3.20 (dt, J = 9.3, 2.2 Hz,
1H), 2.91 (dd, J = 16.2, 9.3 Hz, 1H), 2.40 − 2.36 (m, 1H), 1.85 (dddd,
J = 17.7, 12.7, 6.7, 3.2 Hz, 3H), 1.78−1.70 (m, 3H), 1.66−1.58 (m,
4H), 1.54−1.40 (m, 4H), 1.28 (s, 3H), 1.02 (s, 3H), 0.99 (d, J = 6.9
Hz, 3H), 0.91 (d, J = 6.5 Hz, 3H), 0.83 (s, 9H), 0.01 (s, 3H), −0.02 (s,
3
1
2
966, 2923, 2872, 1776, 1697, 1375, 1195, and 702. H NMR (400
MHz, chloroform-d) δ 7.33 (t, J = 7.2 Hz, 2H), 7.30−7.27 (m, 1H),
.21 (d, J = 7.3 Hz, 2H), 4.66 (dq, J = 8.7, 4.4 Hz, 1H), 4.17 (d, J = 4.8
Hz, 2H), 4.02 (dd, J = 5.1, 1.7 Hz, 1H), 3.29 (dd, J = 13.4, 3.2 Hz,
H), 2.83 (dd, J = 13.4, 9.4 Hz, 1H), 2.43−2.34 (m, 1H), 1.99 (ddd, J
12.2, 9.2, 3.9 Hz, 1H), 1.88 (ddd, J = 14.2, 9.1, 4.9 Hz, 1H), 1.70 (td,
7
1
=
3H). 13C NMR (125 MHz, CDCl ) δ 148.97, 138.90, 133.60, 129.38
3
J = 12.0, 3.9 Hz, 1H), 1.49 (d, J = 7.3 Hz, 1H), 1.45 (s, 3H), 1.36 (s,
(2C), 129.14 (2C), 111.78, 85.64, 85.47, 76.79, 61.42, 55.46, 50.99,
45.83, 42.00, 39.32, 35.16, 34.88, 33.16, 31.76, 31.72, 26.14 (3C),
22.35, 19.85, 18.43, 18.29, 18.24, −4.00, −4.19. ESI-HRMS calcd for
3
1
5
H), 1.00 (d, J = 7.1 Hz, 3H). 13C NMR (100 MHz, CDCl ) δ 173.2,
3
53.1, 135.3, 129.5 (2C), 129.1 (2C), 127.5, 86.5, 86.2, 65.8, 60.1,
6.3, 46.6, 38.8, 37.7, 34.0, 21.2, 18.4, 17.9. ESI-HRMS calcd for
+
C H O SSi, 561.3435 [M + H] ; found, 561.3430.
32
53
4
+
C H NO , 344.1862 [M + H] ; found, 344.1861.
(−)-tert-Butyldimethyl{[(1R,2S,5R)-5-methyl-2-{(S)-4-(phenylsul-
20
26
4
2
1. (+)-[(1S,2R,3S,4R)-1,3,4-Trimethyl-7-oxabicyclo[2.2.1]heptan-
fonyl)-4-[(1S,2S,3S,4R)-1,3,4-trimethyl-7-oxabicyclo[2.2.1]heptan-2-
2
-yl]methanol, (+)-22. By following the same procedure for the
yl]but-1-en-2-yl}cyclohexyl]oxy}silane, (−)-15b. [α] = −39.2 (c =
D
−1
preparation of (−)-22 (section 5), the enantiomeric compound (+)-22
1.0, CHCl ). IR (cm ) 2955, 2925, 2870, 1447, 1304, 1144, 1083, and
734. H NMR (500 MHz, chloroform-d) δ 7.90 (d, J = 7.8 Hz, 2H),
3
1
(
2.37 g, 96%) was prepared from (+)-11 (5.0 g, 14.6 mmol) as a white
−1
solid. [α]D = +6.66 (c = 0.6, CHCl ). IR (cm ) 3436, 2962, 2924,
7.64 (dd, J = 8.5, 6.2 Hz, 1H), 7.55 (t, J = 7.6 Hz, 2H), 4.77 (s, 1H),
4.75 (s, 1H), 3.22 (td, J = 10.1, 4.0 Hz, 1H), 3.06 (dt, J = 8.4, 3.2 Hz,
1H), 2.64 (p, J = 6.8 Hz, 1H), 2.56 (d, J = 14.6 Hz, 1H), 2.35 (ddd, J =
12.7, 9.0, 4.1 Hz, 1H), 2.29 (dd, J = 15.1, 8.3 Hz, 1H), 1.94 (ddd, J =
11.5, 9.1, 4.6 Hz, 1H), 1.83 (dt, J = 6.1, 2.9 Hz, 1H), 1.66 (td, J = 11.9,
3.9 Hz, 2H), 1.53 (ddd, J = 16.7, 8.1, 4.5 Hz, 4H), 1.34 (s, 7H), 1.11
(d, J = 6.7 Hz, 3H), 1.02 (dd, J = 13.1, 3.4 Hz, 1H), 0.83 (d, J = 6.6
Hz, 3H), 0.81 (s, 9H), 0.62 − 0.52 (m, 2H), −0.06 (s, 3H), −0.11 (s,
3
1
2
877, 1455, 1374, 1016, and 852. H NMR (400 MHz, chloroform-d)
δ 3.67 (dd, J = 10.8, 7.0 Hz, 1H), 3.57 (dd, J = 10.8, 7.7 Hz, 1H), 2.21
s, 1H), 1.79 (ddd, J = 12.1, 9.3, 4.0 Hz, 1H), 1.59 (td, J = 13.1, 12.6,
(
5
.8 Hz, 1H), 1.52−1.43 (m, 3H), 1.41 (s, 3H), 1.36 (dd, J = 7.2, 5.0
13
Hz, 1H), 1.25 (s, 3H), 0.91 (d, J = 6.8 Hz, 3H). C NMR (100 MHz,
CDCl ) δ 85.0, 84.8, 64.1, 60.1, 46.1, 39.0, 32.2, 21.6, 18.7, 17.9. ESI-
3
+
HRMS calcd for C H O , 171.1385 [M + H] ; found, 171.1384.
10
19
2
3H). 13C NMR (125 MHz, CDCl ) δ 148.34, 140.12, 133.42, 129.31,
2
2. (+)-(1S,2S,3S,4R)-2-(Iodomethyl)-1,3,4-trimethyl-7-
3
oxabicyclo[2.2.1]heptane, (+)-23. By following the same procedure
for the preparation of (−)-23 (section 6), the enantiomer (+)-23 (3.1
128.83, 111.30, 85.74, 76.82, 61.95, 58.76, 50.54, 45.50, 43.15, 41.24,
39.52, 34.68, 34.01, 31.49, 26.09, 22.33, 21.97, 19.25, 18.28, 18.15,
+
g, 95%) was prepared from (+)-22 (2.0 g, 11.76 mmol). [α] = +37.79
−4.14, −4.33. ESI-HRMS calcd for C H O SSi, 561.3435 [M + H] ;
D
32 52
4
−1
(
c = 0.6, CHCl ). IR (cm ) 2967, 2899, 1459, 1374, 1188, and 872.
found, 561.3438.
3
1
H NMR (500 MHz, chloroform-d) δ 3.18 (m, 2H), 1.84 (m, 2H),
26. (+)-(1R,2S,5R)-5-Methyl-2-{(S)-4-(phenylsulfonyl)-4-
[(1S,2S,3S,4R)-1,3,4-trimethyl-7-oxa bicyclo[2.2.1]heptan-2-yl]but-
1-en-2-yl}cyclohexanol, (+)-24a. By following the same procedure
for the preparation of (−)-24a (section 11), the enantiomeric
compound (+)-24a (0.86 g, 90%) was prepared from (−)-15a (1.2
1
.68 (td, J = 12.24, 3.95 Hz, 1H), 1.59 (m, 1H), 1.51 (m, 1H), 1.46
13
(
m, 4H), 1.31 (s, 3H), 1.07 (d, J = 6.84 Hz, 3H). C NMR (125
MHz, CDCl ) δ 85.8, 84.9, 60.2, 50.6, 38.8, 31.9, 21.1, 18.8, 18.4, 6.3.
3
+
ESI-HRMS calcd for C H IO, 281.0402 [M + H] ; found, 281.0405.
10
18
−1
2
3. (+)-(1R,2S,3S,4S)-1,2,4-Trimethyl-3-[(phenylsulfonyl)methyl]-
g, 2.1 mmol) as a white solid. [α] = +6.9 (c = 0.8, CHCl ). IR (cm )
D
3
1
7
-oxabicyclo[2.2.1]heptane, (+)-12. By following the same procedure
3531, 2916, 1445, 1379, 1304, 1144, 1084, and 734. H NMR (500
MHz, chloroform-d) δ 7.87 (dd, J = 7.3, 1.7 Hz, 2H), 7.63 (dd, J = 8.4,
6.4 Hz, 1H), 7.55 (t, J = 7.6 Hz, 2H), 5.01 (d, J = 1.6 Hz, 1H), 4.91 (s,
1H), 3.52 (td, J = 10.4, 4.2 Hz, 1H), 3.35 (dt, J = 8.6, 2.3 Hz, 1H),
2.76 (dd, J = 18.1, 8.7 Hz, 1H), 2.45−2.40 (m, 1H), 2.01−1.93 (m,
2H), 1.89−1.81 (m, 2H), 1.75 (p, J = 6.6 Hz, 1H), 1.67−1.59 (m,
4H), 1.53−1.45 (m, 2H), 1.44−1.34 (m, 2H), 1.29 (s, 3H), 1.26−1.23
for the preparation of (−)-12 (section 7), the enantiomer (+)-12
(
+
1
2.46 g, 95%) was prepared from (+)-23 (2.5 g, 8.9 mmol). [α] =
D
−1
15.41 (c = 0.3, CHCl ). IR (cm ) 2964, 2926, 2875, 1446, 1298,
3
1
131, and 866. H NMR (400 MHz, chloroform-d) δ 7.90 (d, J = 8.0
Hz, 2H), 7.68−7.61 (m, 1H), 7.57 (d, J = 8.8 Hz, 2H), 3.05 (d, J = 7.2
Hz, 2H), 1.73 (d, J = 16.6 Hz, 2H), 1.58 (dd, J = 17.3, 9.8 Hz, 2H),
1
.53−1.38 (m, 2H), 1.27 (d, J = 7.8 Hz, 6H), 1.02 (d, J = 6.8 Hz, 3H).
(m, 1H), 1.20 (dd, J = 12.8, 3.4 Hz, 1H), 1.04 (d, J = 6.7 Hz, 3H), 1.01
1
3
13
C NMR (100 MHz, CDCl ) δ 139.5, 133.7, 129.3 (2C), 127.8 (2C),
(s, 3H), 0.93 (d, J = 6.5 Hz, 3H). C NMR (125 MHz, CDCl ) δ
3
3
9
230
dx.doi.org/10.1021/jo401461x | J. Org. Chem. 2013, 78, 9223−9232