D. Gamenara et al. / Tetrahedron Letters 48 (2007) 2505–2507
2507
spectra of the products and later confirmed by X-ray
diffraction studies performed on oxazine 6.
References and notes
1
5
1
. Tracy, J. W.; Webster, L. T. F a´ rmacos usados en la
quimioterapia de infecciones causadas por protozoarios.
In Las Bases Farmacol o´ gicas de la Terap e´ utica; Goodman
The in vitro biological activity of the new compounds
was assayed against the protozoan parasites P. falcipa-
rum, Trypanosoma cruzi and Trypanosoma brucei rhodes-
iense, and their toxicity evaluated against KB cells (Table
&
Gilman Ed.; Ed. Interamericana: M e´ xico DF, 1996;
Vol. II, pp 1025–1047.
2
3
. Enserink, M. Science 2000, 287, 1956–1958.
. Woerdenbag, H. J.; Pras, N.; Van Uden, W.; Wallaart, T.
E.; Beekmann, A. C.; Lugt, C. B. Pharm. World Sci. 1994,
1
6–18
1
).
It can be observed that few of these anti adducts
have activity against P. falciparum, and those that show
activity are less active than the standard drug by a factor
1
6, 169–180.
3
of 10 . The situation is more promising against T. cruzi
4. Phillipson, J. D.; O’Neill, M. J. Biological Active Natural
Products; Oxford Science: Oxford, England, 1987.
5. Meshnick, S. R.; Taylor, T. E.; Kamchonwongpaisan, S.
Microbiol. Rev. 1996, 60, 301–315.
and T. brucei rhodesiense as more of the adducts show
some activity, and the activity in some cases is only ten
times lower than the standards. Compound 16 is quite
active on both parasites, as are compounds 12, 13 and
6
7
8
. Laurent, S. A.-L.; Robert, A.; Meunier, B. Angew. Chem.,
Int. Ed. 2005, 44, 2060–2063.
. Posner, G. H.; Oh, C. H. J. Am. Chem. Soc. 1992, 114,
1
4, at a lower level. Compounds 9 and 12 show good
results on T. cruzi and compound 6 is active on T. brucei
rhodesiense. The compounds that show activity are those
with less polar p-substituents. These results are being
taken into consideration in experiments on the activity
of the syn adducts which are being carried out. Now that
some of the basic aspects of the synthetic reactions have
been established, it is clear that the scheme is particularly
interesting for a combinatorial approach to a vast group
of potential drugs.
8
328–8329.
. Posner, G. H.; Oh, C. H.; Wang, D.; Gerena, L.; Milhous,
W. K.; Meshnick, S. R.; Asawamahasakda, W. J. Med.
Chem. 1994, 37.
9. Posner, G. H.; O’Neill, P. M. Acc. Chem. Res. 2004, 37,
397–404.
10. Pauling, L. The Nature of the Chemical Bond, 3rd ed.;
Cornell, Univ. Press.: New York, 1960.
1. Ren, H.; Grady, S.; Gamenara, D.; Heinzen, H.; Moyna,
P.; Croft, S. L.; Kendrick, H.; Yardley, V.; Moyna, G.
Bioorg. Med. Chem. Lett. 2001, 11, 1851–1854.
1
1
1
2. Corey, E. J.; Burke, H. J. J. Am. Chem. Soc. 1956, 78, 174–
Acknowledgements
1
80.
3. Kazlauskas, R. J.; Weissfloch, A. N. E.; Rappaport, A. T.;
The authors thank the Infectious and Tropical Diseases
of the London School of Hygiene and Tropical Medi-
cine, London, UK, for the biological evaluations, and
Novozymes and Roche for their generous gifts of
enzymes, CSIC and PEDECIBA (Montevideo, Uruguay)
for funding the project.
Cuccia, L. A. J. Org. Chem. 1991, 56, 2656–2665.
14. Hart, H.; Sambharamadom, K. R.; Willer, R. J. Org.
Chem. 1979, 44, 1–7.
15. Russi, S.; Pardo, H.; Heinzen, H.; D ´ı as, E.; Moyna, P.;
Mariezcurrena, R.; Suescun, L.; Mombr u´ , A. Acta Crys-
tallogr., Sect. C 2000, 672–673.
1
6. Desjardins, R. E.; Canfield, C. J.; Haynes, J. D.; Chulay,
J. D. Antimicrob. Agents Chemother. 1979, 16, 710–
7
18.
Supplementary data
1
7. Budkner, F. S.; Verlinde, C. L.; La Flamme, A. C.; Van
Voortis, W. C. Antimicrob. Agents Chemother. 1996, 40,
2
592–2597.
18. Raz, B.; Item, M.; Grether-Buhler, Y.; Kaminski, R.;
Brun, R. Acta Trop. 1997, 68, 139–147.