Advanced Synthesis & Catalysis
10.1002/adsc.202000058
2
acetone in KPi (100 mM, pH 7, 1.00 mM MgCl ) was
5
433; e) M. Baumann, I. R. Baxendale, S. V. Ley,
performed for 10 min (step 2). Then, step 1 was repeated
for ketone 1c (step 3). This time, 21.0 mg (0.11 mmol)
were solved in 512 µL 2-propanol resulting in a 200 mM
solution. The remaining steps were carried out as described
above, but the flow rate combination was set to
Mol. Diversity 2011, 15, 613-630; f) F. Lévesque,
P. H. Seeberger, Angew. Chem. Int. Ed. 2012, 51,
1706-1709; g) D. Kopetzki, F. Lévesque, P. H.
Seeberger, Chem. Eur. J. 2013, 19, 5450-5456.
a) R. A. Sheldon, J. M. Woodley, Chem. Rev.
2018, 118, 801-838; b) G. Qu, A. Li, Z. Sun, C. G.
Acevedo-Rocha, M. T. Reetz, Angew. Chem. Int.
Ed. 2019, 10.1002/anie.201901491; c) B. M.
Nestl, B. A. Nebel, B. Hauer, Curr. Opin. Chem.
Biol. 2011, 15, 187-193; d) A. Weckbecker, H.
Gröger, W. Hummel, in Biosystems Engineering
I: Creating Superior Biocatalysts (Eds.: C.
Wittmann, R. Krull), Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010, pp. 195-242; e) J.
Britton, C. L. Raston, Chem. Soc. Rev. 2017, 46,
1250-1271.
a) A. Kirschning, W. Solodenko, K. Mennecke,
Chem. Eur. J. 2006, 12, 5972-5990; b) S. V. Ley,
Chem. Rec. 2012, 12, 378-390; c) R. A. Sheldon,
D. Brady, ChemSusChem 2019, 12, 2859-2881; d)
M. B. Plutschack, B. Pieber, K. Gilmore, P. H.
Seeberger, Chem. Rev. 2017, 117, 11796-11893;
e) F. M. Akwi, P. Watts, Chem. Commun. 2018,
54, 13894-13928; f) D. E. Fitzpatrick, C.
5
0/5/55 µL/min and the intermediate flushing was
[
2]
performed for 15 min. The collected organic layers were
1
evaporated and a H-NMR was taken. A full conversion
was achieved and product 2d yielded in 92% as yellow oil
-
1
-1
(
ee <99%, 21.0 mg, STY 114 g L h , after step 1 and 2).
For product 2c, a product/substrate mixture of 97/3 was
collected, which was further purified by flash
chromatography (n-pentane:EtOAc 8:2). Afterwards, the
product was collected as yellow oil in 87% yield (ee <99%,
-
1
-1
1
8.2 mg, STY 30.9 g L h , after step 3 and 4). Product 2c:
1
H NMR (600 MHz, DMSO-d
6
): δ 5.82 – 5.76 (m, 1H; 8-
3
H), 5.12 (d,
J9-trans,8=17.2 Hz, 1H; 9trans-H), 4.97 (d,
3
3
J
9cis,8=10.5 Hz, 1H; 9cis-H), 4.65 (d, JOH,7=4.80 Hz, 1H;
3
OH), 4.04 (q, J1’,2’=7.10 Hz, 2H; 1’-H), 3.89 (m, 1H; 7-h),
3
3
2
.26 (t, J2,3=7.38 Hz, 2H; 2-H), 1.50 (p, J3,4=7.36 Hz,
3
J
3,2=7.38 Hz, 2H; 3-H), 1.38 – 1.33 (m, 2H; 6-H), 1.33 –
3
1
.23 (m, 4h; 4-H, 5-H), 1.17 (t, J2’,1=7.10 Hz, 3H; 2’-H). [3]
13
6
C NMR (151 MHz, DMSO-d ): δ 172.70 (C-1), 142.53
(
C-8), 112.78 (C-9), 70.77 (C-7), 59.46 (C-1‘), 36.60 (C-6),
3.32 (C-2), 28.30 (C-4), 24.46 (C-3), 24.33 (C-5), 13.98
C-2‘). IR (ATR): 3443, 2987, 2934, 2860, 1733, 1463,
3
(
1
6
423, 1373, 1266, 1180, 1119, 1095, 1029, 991, 919, 737,
-1
20
f
퐷
69, 591 cm . R = 0.26 (PE:EtOAc 8:2). [훼] = 5.32
1
(
c=1.08 in CHCl ). Product 2d: H NMR (600 MHz,
3
3
CDCl
3
): δ 4.28-4.23 (m, 1H; 3-H), 4.19 (q, J1’,2’=7.2 Hz,
2
H; 1’-H), 3.64 – 3.58 (m, 2H; 4-H), 3.12 (d, 1H; OH),
3
2
.67 – 2.59 (m, 2H; 2-H), 1.28 (t, J2’,1’=7.2 Hz, 3H; 2’-H).
Battilocchio, S. V. Ley, ACS Cent. Sci. 2016, 2,
1
2
F. Paradisi, F. Molinari, Trends Biotechnol. 2018,
36, 73-88; i) R. Yuryev, S. Strompen, A. Liese,
Beilstein J. Org. Chem. 2011, 7, 1449-1467; j) D.
T. McQuade, P. H. Seeberger, J. Org. Chem 2013,
13
C NMR (151 MHz, CDCl
3
): δ 172.15 (C-1), 68.32 (C-3),
31-138; g) A. M. Foley, A. R. Maguire, 2019,
019, 3713-3734; h) L. Tamborini, P. Fernandes,
6
1.39 (C-1’), 48.48 (C-4), 38.78 (C-2), 14.50 (C-2’). IR
(
ATR): 3452, 2983, 1722, 1406, 1374, 1304, 1259, 1188,
1
4
151, 1086, 1058, 1030, 951, 894, 850, 803, 756, 709, 557,
-
1
25
73 cm . R
f
퐷
= 0.30 (PE:EtOAc 8:2). [훼] = -26.6 (c=1.25
in CHCl
3
).
7
8, 6384-6389.
Calculation of space-time yield (STY)
[
4]
a) J. Britton, S. Majumdar, G. A. Weiss, Chem.
Soc. Rev. 2018, 47, 5891-5918; b) R. Porta, M.
Benaglia, A. Puglisi, Org. Process Res. Dev.
The STY was calculated according to the following
equation:
2
016, 20, 2-25.
M. L. Contente, F. Molinari, Nat. Catal. 2019, 2,
51-952.
Yield [g]
STY =
[5]
[6]
9
column volume [L] ∗ time [h]
a) C. J. Hartley, C. C. Williams, J. A. Scoble, Q. I.
Churches, A. North, N. G. French, T. Nebl, G.
Coia, A. C. Warden, G. Simpson, A. R. Frazer, C.
N. Jensen, N. J. Turner, C. Scott, Nat. Catal.
-
4
column volume= 3.53*10 L
2
019, 2, 1006-1015; b) S. Velasco-Lozano, A. I.
Acknowledgements
Benítez-Mateos, F. López-Gallego, Angew. Chem.
Int. Ed. 2017, 56, 771-775; c) M. Heidlindemann,
G. Rulli, A. Berkessel, W. Hummel, H. Gröger,
ACS Catal. 2014, 4, 1099-1103; d) A. Fassouane,
J.-M. Laval, J. Moiroux, C. Bourdillon,
Biotechnol. Bioeng. 1990, 35, 935-939; e) S.
Kochius, J. B. Park, C. Ley, P. Könst, F.
Hollmann, J. Schrader, D. Holtmann, J. Mol.
Catal. B: Enzym. 2014, 103, 94-99; f) R.
The authors thank the Heinrich-Heine University Düsseldorf and
the Forschungszentrum Jülich GmbH for their support. The
European Regional Development Fund (ERDF) funded this
project. Moreover, we are grateful to Johannes Döbber for
providing the plasmid, Beatrix Paschold for the preparation of
preparative amounts of the HaloTag-LbADH, and to Birgit
Henßen as well as Patrick Ullrich for establishing the analytical
methods (GC/HPLC).
Ruinatscha, K. Buehler, A. Schmid, J. Mol. Catal.
B: Enzym. 2014, 103, 100-105; g) S. K. Yoon, E.
R. Choban, C. Kane, T. Tzedakis, P. J. A. Kenis,
J. Am. Chem. Soc. 2005, 127, 10466-10467.
a) J. Döbber, M. Pohl, S. V. Ley, B. Musio, React.
Chem. Eng. 2018, 3, 8-12; b) J. Döbber, T.
Gerlach, H. Offermann, D. Rother, M. Pohl,
Green Chem. 2018, 20, 544-552; c) T. Peschke, P.
Bitterwolf, K. S. Rabe, C. M. Niemeyer, Chem.
References
[
1]
a) D. J. Pollard, J. M. Woodley, Trends
Biotechnol. 2007, 25, 66-73; b) M. P. Thompson,
I. Peñafiel, S. C. Cosgrove, N. J. Turner, Org.
Process Res. Dev. 2019, 23, 9-18; c) J. C. Pastre,
D. L. Browne, S. V. Ley, Chem. Soc. Rev. 2013,
[
7]
4
2, 8849-8869; d) F. B. Mortzfeld, J. Pietruszka, I.
R. Baxendale, Eur. J. Org. Chem. 2019, 5424-
7
This article is protected by copyright. All rights reserved.