Communication
ChemComm
Notes and references
1 P. Powell, Principles of Organometallic Chemistry, Chapman and Hall,
New York, 2nd edn, 1988.
2 (a) R. K. McMullan, T. F. Koetzle and C. J. Fritchie Jr, Acta Crystallogr.,
Sect. B: Struct. Sci., 1997, 53, 645–653; (b) E. L. Muetterties, J. R. Bleeke,
E. J. Wucherer and T. Albright, Chem. Rev., 1982, 82, 499–525;
(c) M. N. Bochkarev, Chem. Rev., 2002, 102, 2089–2118; (d) S. M. Hubig,
S. V. Lindeman and J. K. Kochi, Coord. Chem. Rev., 2000, 200, 831–873;
(e) G. Pampaloni, Coord. Chem. Rev., 2010, 254, 402–419; ( f ) A. Guerrero,
E. Martin, D. L. Hughes, N. Kaltsoyannis and M. Bochmann, Organome-
tallics, 2006, 25, 3311–3313; (g) F. Meyer, F. A. Khan and P. B. Armentrout,
J. Am. Chem. Soc., 1995, 117, 9740–9748; (h) W. Wang, S. Inoue, S. Yao and
M. Driess, J. Am. Chem. Soc., 2010, 132, 15890–15892.
3 R. H. Crabtree, Organometallic Chemistry of the Transition Metals,
Wiley, New York, 3rd edn, 2001.
4 A. M. Wright, B. J. Irving, G. Wu, A. J. H. M. Meijer and T. W. Hayton,
Angew. Chem., Int. Ed., 2015, 54, 3088–3091.
´
5 N. Parvin, S. Pal, J. Echeverrıa, S. Alvarez and S. Khan, Chem. Sci.,
2018, 9, 4333–4337.
6 Y. M. Badiei, A. Dinescu, X. Dai, R. M. Palomino, F. W. Heinemann,
T. R. Cundari and T. H. Warren, Angew. Chem., Int. Ed., 2008, 47,
9961–9964.
7 R. T. Gephart, C. L. McMullin, N. G. Sapiezynski, E. S. Jang,
M. J. B. Aguila, T. R. Cundari and T. H. Warren, J. Am. Chem. Soc.,
2012, 134, 17350–17353.
8 D. Ma, Y. Zhang, J. Yao, S. Wu and F. Tao, J. Am. Chem. Soc., 1998,
120, 12459–12467.
9 T. Osako, Y. Tachi, M. Doe, M. Shiro, K. Ohkubo, S. Fukuzumi and
S. Itoh, Chem. – Eur. J., 2004, 10, 237–246.
10 A. E. Nako, Q. W. Tan, A. J. P. White and M. R. Crimmin, Organo-
metallics, 2014, 33, 2685–2688.
11 A. E. Nako, A. J. P. White and M. R. Crimmin, Dalton Trans., 2015,
44, 12530–12534.
Scheme 5 General reaction scheme and substrate scope for triazole
synthesis using 2. aReaction conditions: azide (0.2 mmol), alkyne (0.2 mmol),
and toluene (2 mL) at room temperature. bHeating at 50 1C. 1H NMR
spectroscopy was used to determine the conversion yield of the products.
See Table S1 (ESI†) for the reaction optimization details.
12 R. S. Srivastava, M. A. Khan and K. M. Nicholas, J. Am. Chem. Soc.,
2005, 127, 7278–7279.
of yield for trimethylsilyl alkynes (IV and VIII) was also noted
with a Stalke’s multinuclear Si(II)–Cu catalyst. In fact, the 13 S. S. Sen, J. Hey, R. Herbst-Irmer, H. W. Roesky and D. Stalke, J. Am.
Chem. Soc., 2011, 133, 12311–12316.
14 N. Parvin, R. Dasgupta, S. Pal, S. S. Sen and S. Khan, Dalton Trans.,
performance of 2 is better than Stalke’s catalysts in terms of
catalyst loading (0.5 mol% vs. 1 mol%) and the reaction time.
2017, 46, 6528–6532.
´
´
´
For comparison purpose, we have also used 5 as a catalyst in 15 S. Dıez-Gonzalez, E. C. Escudero-Adan, J. Benet-Buchholz, E. D. Stevens,
the CuAAC reaction and the related results are provided in the
ESI† (Scheme S2).
A. M. Z. Slawin and S. P. Nolan, Dalton Trans., 2010, 39, 7595–7606.
16 A. Falceto, E. Carmona and S. Alvarez, Organometallics, 2014, 33,
6660–6668.
In summary, we report for the first time free toluene and 17 See computational details in ESI† for detailed citations.
18 The optimization using metaGGA functional M06 and GGA functional
m-xylene coordinated monomeric cationic copper(I)–silylene/IPr
complexes. Replacement of silylene with NHC as a ligand led to
BP86 with D3BJ dispersion correction by Grimme (BP86-D3-BJ) also
leads to the Z2/Z3-coordination of the arene ring.
the isolation of NHC supported copper–toluene and xylene 19 (a) B. Blom, S. Enthaler, S. Inoue, E. Irran and M. Driess, J. Am.
Chem. Soc., 2013, 135, 6703–6713; (b) C. I. Someya, M. Haberberger,
W. Wang, S. Enthaler and S. Inoue, Chem. Lett., 2013, 42, 286–288;
(c) D. Gallego, A. Bru¨ck, E. Irran, F. Meier, M. Kaupp, M. Driess and
complexes too. Further we also showed the reactivity of these
complexes with strong donor ligands which led to the isolation
of the first dicoordinate copper complex 8 supported by mixed
tetrelylenes. We also used 2 and 5 as catalysts in the copper-
catalyzed azide–alkyne cycloaddition (CuAAC) reactions and
found that 2 is very efficient for a variety of substrates.
S. K. thanks SERB (India) and BRNS for the financial
support. DST-FIST is acknowledged for the single crystal X-ray
J. F. Hartwig, J. Am. Chem. Soc., 2013, 135, 15617–15626;
(d) S. Khan, S. K. Ahirwar, S. Pal, N. Parvin and N. Kathewad,
Organometallics, 2015, 34, 5401–5406; (e) S. Khan, S. Pal,
N. Kathewad, I. Purushothaman, S. De and P. Parameswaran, Chem.
Commun., 2016, 52, 3880–3882.
20 (a) W. Petz, B. Neumu¨ller, S. Klein and G. Frenking, Organometallics,
2011, 30, 3330–3339; (b) C. Boehme and G. Frenking, Organometal-
lics, 1998, 17, 5801–5809.
diffractometer. N. P. and J. H. thank UGC and DST-INSPIRE for 21 (a) B. Schulze and U. S. Schubert, Chem. Soc. Rev., 2014, 43,
2522–2571; (b) M. G. Finn and V. V. Fokin, Chem. Soc. Rev., 2010,
39, 1231–1232.
providing the fellowships. The authors acknowledge Dr Shiv Pal
for helping in the refinement of crystals 2, 3 and 5.
´
22 (a) S. Dıez-Gonzalez and S. P. Nolan, Angew. Chem., Int. Ed., 2008, 47,
´
´
8881–8884; (b) E. Haldon, M. C. Nicasio and P. J. Perez, Org. Biomol.
Chem., 2015, 13, 9528–9550.
23 A. N. Paesch, A.-K. Kreyenschmidt, R. Herbst-Irmer and D. Stalke,
Inorg. Chem., 2019, 58, 7000–7009.
24 F. M. Moghaddam, V. Saberi, S. Kalhora and S. E. Ayati, RSC Adv.,
2016, 6, 80234–80243 and references therein.
Conflicts of interest
There are no conflicts to declare.
276 | Chem. Commun., 2020, 56, 273--276
This journal is © The Royal Society of Chemistry 2020