Organic Letters
Cartesian coordinates of the optimized structure of 3a-
Letter
thesis of Ladder π-Conjugated Skeletons. Org. Lett. 2009, 11, 3076−
3079. (e) Araneda, J. F.; Neue, B.; Piers, W. E.; Parvez, M.
Photochemical Synthesis of a Ladder Diborole: a New Boron-
Containing Conjugate Material. Angew. Chem., Int. Ed. 2012, 51,
8546−8550. (f) Zhao, J.; Ru, C.; Bai, Y.; Wang, X.; Chen, W.; Wang,
X.; Pan, X.; Wu, J. Synthesis of Bis-Cycloborate Olefin and Butatriene
Derivatives Through the Reduction of Alkynyl-Bridged Diboryl
Compounds. Inorg. Chem. 2018, 57, 12552−12561.
Accession Codes
contain the supplementary crystallographic data for this paper.
cam.ac.uk, or by contacting The Cambridge Crystallographic
Data Centre, 12 Union Road, Cambridge CB2 1EZ, U.K.; fax:
+44 1223 336033.
(5) Tsuchiya, S.; Saito, H.; Nogi, K.; Yorimitsu, H. Aromatic
Metamorphosis of Indoles into 1,2-Benzazaborins. Org. Lett. 2019, 21,
3855−3860.
(6) Asakawa, H.; Lee, K.-H.; Furukawa, K.; Lin, Z.; Yamashita, M.
Lowering the Reduction Potential of a Boron Compound by Means of
the Substituent Effect of the Boryl Group: One-Electron Reduction of
an Unsymmetrical Diborane(4). Chem. - Eur. J. 2015, 21, 4267−4271.
(7) For recent reviews of preparations and transformations of
bis(boronate)s, see: (a) Takaya, J.; Iwasawa, N. Catalytic, Direct
Synthesis of Bis(boronate) Compounds. ACS Catal. 2012, 2, 1993−
2006. (b) Xu, L.; Zhang, S.; Li, P. Boron-selective reactions as
powerful tools for modular synthesis of diverse complex molecules.
Chem. Soc. Rev. 2015, 44, 8848−8858. (c) Neeve, E. C.; Geier, S. J.;
Mkhalid, I. A. I.; Westcott, S. A.; Marder, T. B. Diboron(4)
Compounds: From Structural Curiosity to Synthetic Workhorse.
Chem. Rev. 2016, 116, 9091−9161. (d) Cuenca, A. B.; Shishido, R.;
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Notes
́
Ito, H.; Fernandez, E. Transition-Metal-Free B−B and B−Interele-
ment Reactions with Organic Molecules. Chem. Soc. Rev. 2017, 46,
415−430.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(8) For selected recent examples of diborations affording 1,2-
bis(boronate)s, see: (a) Fang, L.; Yan, L.; Haeffner, F.; Morken, J. P.
Carbohydrate-Catalyzed Enantioselective Alkene Diboration: En-
hanced Reactivity of 1,2-Bonded Diboron Complexes. J. Am. Chem.
Soc. 2016, 138, 2508−2511. (b) Verma, A.; Snead, R. F.; Dai, Y.;
Slebodnick, C.; Yang, Y.; Yu, H.; Yao, F.; Santos, W. L. Substrate-
Assisted, Transition-Metal-Free Diboration of Alkynamides with
Mixed Diboron: Regio- and Stereoselective Access to trans-1,2-
Vinyldiboronates. Angew. Chem., Int. Ed. 2017, 56, 5111−5115.
(c) Peng, S.; Liu, G.; Huang, Z. Mixed Diboration of Alkynes
Catalyzed by LiOH: Regio- and Stereoselective Synthesis of cis-1,2-
Diborylalkenes. Org. Lett. 2018, 20, 7363−7366. (d) Yan, L.; Meng,
Y.; Haeffner, F.; Leon, R. M.; Crockett, M. P.; Morken, J. P.
Carbohydrate/DBU Cocatalyzed Alkene Diboration: Mechanistic
Insight Provides Enhanced Catalytic Efficiency and Substrate Scope. J.
Am. Chem. Soc. 2018, 140, 3663−3673.
This work was supported by JSPS KAKENHI Grants
JP16H04109, JP18H04254, JP18H04409, JP19H00895, and
JP18K14212. H.Y. thanks The Asahi Glass Foundation for
financial support. We thank KOBELCO ECO-Solutions Co.,
Ltd. for providing Na dispersion. We also acknowledge the
assistance of the Research Equipment Sharing Center at
Nagoya City University.
REFERENCES
■
(1) Campbell, K. N.; Eby, L. T. The Preparation of Higher cis and
trans Olefins. J. Am. Chem. Soc. 1941, 63, 216−219.
(2) For reviews, see: (a) Campbell, K. N.; Campbell, B. K. The
Addition of Hydrogen to Multiple Carbon−Carbon Bonds. Chem.
Rev. 1942, 31, 77−175. (b) Pasto, D. J. Reduction of CC and C
C by Noncatalytic Chemical Methods. In Comprehensive Organic
Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, U.K.,
1991; Vol. 8, pp 471−488.
(3) In the presence of lithium metal, diphenyl and phenyl silyl
acetylenes undergo reductive dimerization into 1,4-dilithio-1,3-
butadienes. See: (a) Smith, L. I.; Hoehn, H. H. The Reaction
Between Lithium and Diphenylacetylene. J. Am. Chem. Soc. 1941, 63,
1908190, 1910932, 1911287, and 1911966−1911968).
(10) 3a-Li2(thf)3 (C38H58B2Li2O7·C4H8O) (CCDC 1910932): FW
= 734.44, λ = 0.71073 Å, T = −170 °C, triclinic, P1
11.0497(2) Å, b = 18.6017(3) Å, c = 20.7064(3) Å, α = 88.627(1)°, β
= 80.275(1)°, γ = 84.140(1)°, V = 4172.88(12) Å3, Z = 4, Dcalc
̅
(No. 2), a =
=
1.169 g cm−3, μ = 0.077 mm−1, 2θmax = 52.0°, measd./unique reflns. =
64930/16352 (Rint = 0.0512), 989 parameters, GOF = 1.025, R1 =
0.0506/0.0649 [I > 2σ(I)/all data], wR2 = 0.1305/0.1418 [I > 2σ(I)/
all data], largest diff. peak and hole 0.647 and − 0.433 e Å−3.
(11) Olmstead, M. M.; Power, P. P.; Weese, K. J.; Doedens, R. J.
Isolation and X-Ray Crystal Structure of the Boron Methylidenide Ion
[Mes2BCH2]− (Mes = 2,4,6-Me3C6H2): A Boron-Carbon Double
Bonded Alkene Analogue. J. Am. Chem. Soc. 1987, 109, 2541−2542.
(12) Glendening, E. D.; Landis, C. R.; Weinhold, F. NBO 6.0:
Natural bond orbital analysis program. J. Comput. Chem. 2013, 34,
1429−1437.
1184−1187. (b) Braye, E. H.; Hubel, W.; Caplier, I. New Unsaturated
̈
Heterocyclic Systems. I. J. Am. Chem. Soc. 1961, 83, 4406−4413.
(c) Evans, A. G.; Evans, J. C.; Emes, P. J.; Phelan, T. J. Reactions of
Radical Anions. Part IX. The Radical Anion of 1-Phenyl-2-
trimethylsilylacetylene. J. Chem. Soc. B 1971, 315−318. (d) Saito,
M.; Nakamura, M.; Tajima, T.; Yoshioka, M. Reduction of Phenyl
Silyl Acetylenes with Lithium: Unexpected Formation of a Dilithium
Dibenzopentalenide. Angew. Chem., Int. Ed. 2007, 46, 1504−1507.
(4) (a) Yamaguchi, S.; Xu, C.; Tamao, K. Bis-Silicon-Bridged
Stilbene Homologous Synthesized by New Intramolecular Reductive
Double Cyclization. J. Am. Chem. Soc. 2003, 125, 13662−13663.
(b) Xu, C.; Wakamiya, A.; Yamaguchi, S. General Silaindene
Synthesis Based on Intramolecular Reductive Cyclization Toward
New Fluorescent Silicon-Containing π-Electron Materials. Org. Lett.
2004, 6, 3707−3710. (c) Xu, C.; Wakamiya, A.; Yamaguchi, S. Ladder
Oligo(p-phenylenevinylene)s with Silicon and Carbon Bridges. J. Am.
Chem. Soc. 2005, 127, 1638−1639. (d) Zhang, H.; Karasawa, T.;
Yamada, H.; Wakamiya, A.; Yamaguchi, S. Intramolecular Reductive
Double Cyclization of o,o′-Bis(arylcarbonyl)diphenylacetylenes: Syn-
(13) The structural features of 3a-Li2(thf)3 could be reproduced by
theoretical structure optimizations at the B3PW91-D3(BJ)/6-
311G(2d,p) level of theory. The details of the theoretical calculations
(14) On the basis of NBO calculations, two NBOs were found
between B1−C2 and also between B2−C3. B1−C2: (1) σ bond
(1.953 e), B1(32%, sp1.29)−C2(68%, sp1.74); (2) π bond (1.724 e),
B1(22%, sp99.99)−C2(78%, sp99.99). B2−C3: (1) σ bond (1.951 e),
E
Org. Lett. XXXX, XXX, XXX−XXX