10.1002/ejoc.201800317
European Journal of Organic Chemistry
FULL PAPER
N. S. is grateful to the French Ministry of Higher Education and
Scientific Research for financial support.
Lewis bases in organocatalytic stereoselective reactions have
been demonstrated. While organocatalyst 3a was able to promote
the allylation of aldehydes in up to 96% yield and up to 81% ee,
organocatalyst 3b was more efficient in the formation of optically
active β-hydroxyl ketones in high yields (up to 92%) with good to
excellent diastereo- and enantioselectivities (up to 95:5 d.r., 99%
ee) through the reductive aldol reaction of chalcone and
aldehydes in presence of trichlorosilane. Further studies aimed at
Keywords: Allylation • Reductive Aldol Reaction • Lewis Bases •
Organocatalysts • Asymmetric catalysis
[1]
For selected examples, see: a) S. E. Denmark, D. M. Coe, N. E. Pratt, B.
D. Griedel, J. Org. Chem. 1994, 59, 6161; b) S. E. Denmark, R. A.
Stavenger, J. Org. Chem. 1998, 63, 9524; c) S. E. Denmark, X. Su, Y.
Nishigaichi, D. M. Coe, K.-T. Wong, S. B. D. Winter, J. Y. Choi, J. Org.
Chem. 1999, 64, 1958; d) S. E. Denmark, J. Fu, M. J. Lawler, J. Org.
Chem. 2006, 71, 1513; e) S. E. Denmark, Y. Fan, J. Am. Chem. Soc.
2003, 125, 7825; f) S. E. Denmark, G. L. Beutner, T. Wynn, M. D.
Eastgate, J. Am. Chem. Soc. 2005, 127, 3774.
expanding
bis(triazolyl)bisphosphine
organocatalysts in
the
synthetic
dioxides
other relevant
utility
of
as
these
Lewis
enantioselective
new
base
transformations are currently ongoing in our laboratory and will be
reported in due course.
[2]
[3]
[4]
For selected examples, see: a) K. Iseki, S. Mizuno, Y. Kuroki, Y.
Kobayashi, Tetrahedron 1999, 55, 977; b) K. Iseki, S. Mizuno, Y. Kuroki,
Y. Kobayashi, Tetrahedron Lett. 1998, 39, 2767; c) S. B.; Jagtap, S. B.
Tsogoeva, Chem. Commun. 2006, 4747.
Experimental Section
For comprehensive reviews, see: a) G. Chelucci, G. Murineddu, G. A.
Pinna, Tetrahedron: Asymmetry 2004, 15, 1373; b) A. V. Malkov, P.
Kočovskỳ, Eur. J. Org. Chem. 2007, 29; b) P. Koukal, J. Ulč, D. Nečas,
M. Kotora, Top Heterocycl. Chem. 2017, 53, 29.
General Procedure for the Asymmetric Allylation of Aldehydes with
Allyltrichlorosilane Catalyzed by (S)-3a: Diisopropylethylamine (0.32
mL, 1.8 mmol), allyltrichlorosilane 4 (0.087 mL, 0.60 mmol), and a solution
of the desired aldehydes 5 (0.5 mmol) in anhydrous propionitrile (0.5 mL)
were successively added to a solution of (S)- bis(triazolyl)bisphosphine
dioxide 3a (35.8mg, 0.05 mmol, 10 mol%), and potassium iodide (83mg,
0.5 mmol) in anhydrous propionitrile (2 mL) at room temperature. The
reaction progress was monitored by TLC (hexane/AcOEt, 80:20). Upon
completion (e.g. 6 h), the reaction was quenched by 10% of aqueous
NaOH (3 mL) and the mixture was extracted with AcOEt (2x10 mL). The
combined organic layers were successively washed with 5% HCl (10mL),
saturated aqueous NaHCO3 (10 mL), brine (10 mL), dried over anhydrous
MgSO4, filtered, and evaporated under reduced pressure. The residue was
purified by flash column chromatography (silica gel, hexane/AcOEt
gradient from 100:0 to 70:30) to give the corresponding allylic alcohols 6.
The enantiomeric ratios were determined by HPLC using IA or AS-H
Chiralpak columns.
For selected examples, see: a) S. Kobayashi, C. Ogawa, H. Konishi, M.
Sugiura, J. Am. Chem. Soc. 2003,125, 6610; b) G. J. Rowlands, W. K.
Barnes, Chem. Commun. 2003, 2712; c) I. Fernández, V. Valdivia, B.
Gori, F. Alcudia, E. Álvarez, N. Khiar, Org. Lett. 2005, 7, 1307; d) R. P.
A. Melo, J. A. Vale, G. Zeni, P. H. Menezes, Tetrahedron Lett. 2006, 47,
1829; e) J. R. Fulton, L. M. Kamara, S. C. Morton, G. J. Rowlands,
Tetrahedron 2009, 65, 9134.
[5]
[6]
For a comprehensive review, see: S. E. Denmark, G. L. Beutner, Angew.
Chem., Int. Ed. 2008, 47, 1560.
For reviews, see: a) Y. Orito, M. Nakajima, Synthesis 2006, 9, 1391; b)
M. Benaglia, S. Guizzetti, L. Pignataro, Coord. Chem. Rev. 2008, 252,
492; c) S. Rossi, M. Benaglia, A. Genoni, Tetrahedron, 2014, 70, 2065.
For reviews on asymmetric reactions catalyzed by chiral phosphine
oxides, see: a) M. Benaglia, S. Rossi, Org. Biomol. Chem. 2010, 8, 3824;
b) S. Kotani, M. Sugiura, M. Nakajima, Chem. Rec. 2013, 13, 362.
M. Nakajima, S. Kotani, T. Ishizuka, S. Hashimoto, Tetrahedron Lett.
2005, 46, 157.
[7]
General Procedure for Asymmetric Reductive Aldol Reaction of
Chalcone and Aldehydes with Trichlorosilane Catalyzed by (S)-3b: To
a solution of (S)- bis(triazolyl)bisphosphine dioxide organocatalyst 3b (32
mg, 0.05 mmol, 10 mol%), the desired aldehydes 5 (0.6 mmol), and
chalcone 7 (104 mg, 0.5 mmol) in anhydrous propionitrile (2 mL) was
added dropwise trichlorosilane (ca. 1M CH2Cl2 solution, 1 mmol) at −78 °C.
The reaction was monitored by TLC analysis (hexane/AcOEt, 80:20). After
the chalcone was consumed or no significant change was observed, the
reaction was quenched with saturated aqueous NaHCO3 solution (3 mL).
After addition of AcOEt (5 mL), the mixture was stirred for 1 h, filtered
through a Celite pad and extracted with AcOEt (3x10 mL). The combined
organic layers were washed with brine (10 mL), dried over anhydrous
MgSO4, filtered, and evaporated under reduced pressure. The
diastereomeric ratio syn/anti was determined by 1H NMR spectrum of
crude reaction mixture. The residue was then purified by flash column
chromatography on silica gel using hexane/AcOEt (gradient from 100:0 to
70:30) as eluting solvents to give the desired syn aldol products 8 as the
major products. The enantiomeric excesses were determined by HPLC
using IB or ID Chiralpak columns.
[8]
[9]
For allylation reactions catalyzed by chiral phosphine oxides, see: a) S.
Kotani, S. Hashimoto, M. Nakajima, Tetrahedron 2007, 63, 3122; b) V.
Simonini, M. Benaglia, T. Benincori, Adv. Synth. Catal. 2008, 350, 561;
c) J.-Z. Chen, D. Liu, D.-Y. Fan, Y.-G. Liu, W.-B. Zhang, Tetrahedron
2013, 69, 8161; d) M. Ogasawara, S. Kotani, H. Nakajima, H. Furusho,
M. Miyasaka, Y. Shimoda, W.-Y. Wu, M. Sugiura, T. Takahashi, M.
Nakajima, Angew. Chem. Int. Ed. 2013, 52, 13798; e) O. Dogan, A. Bulut,
M. A. Tecimer, Tetrahedron: Asymmetry 2015, 26, 966.
[10] For selected examples of aldol reactions catalyzed by chiral phosphine
oxides, see: a) S. Kotani, S. Hashimoto, M. Nakajima, Synlett 2006, 7,
1116; b) Y. Shimoda, T. Tando, S. Kotani, M. Sugiura, M. Nakajima,
Tetrahedron: Asymmetry 2009, 20, 1369; c) S. Rossi, M. Benaglia, A.
Genoni, T. Benincori, G. Celentano, Tetrahedron 2011, 67, 158; d) Y.
Shimoda, S. Kotani, M. Sugiura, M. Nakajima, Chem. – Eur. J. 2011, 17,
7992; e) S. Rossi, M. Benaglia, F. Cozzi, A. Genoni, T. Benincori, Adv.
Synth. Catal. 2011, 353, 848; f) M. Bonsignore, M. Benaglia, F.Cozzi, A.
Genoni, S. Rossi, L. M. Raimondi, Tetrahedron 2012, 68, 8251; g) S.
Aoki, S. Kotani, M. Sugiura, M. Nakajima, Chem. Commun. 2012, 5524;
h) P. Zhang, Z.-B. Han, Z. Wang, K. Ding, Angew. Chem. Int. Ed. 2013,
52, 11054; i) Y. Shimoda, T. Kubo, M. Sugiura, S. Kotani, M. Nakajima,
Angew. Chem. Int. Ed. 2013, 52, 3461; j) S. Kotani, S. Aoki, M. Sugiura,
M. Ogasawara, M. Nakajima, Org. Lett. 2014, 16, 4802; k) S. Rossi, R.
Annunziata, F. Cozzi, L. M. Raimondi, Synthesis 2015, 47, 2113; l) P.
Zhang, J. Liu, Z. Wang, K. Ding, Chinese J. Catal. 2015, 36, 100; m) S.
Kotani, K. Kai, M. Sugiura, M. Nakajima, Org. Lett. 2017, 19, 362.
Supporting information: Experimental procedures, characterization data,
and copies of the 1H NMR, 13C NMR and HPLC spectra.
Acknowledgements
This article is protected by copyright. All rights reserved.