32
X. Wang et al. / Journal of Catalysis 231 (2005) 20–32
that the heavy product formation rates do not extrapolate to
the origin, even when CO2 uptake is zero, may suggest the
contribution of sites other than the OH groups to these reac-
tions.
[9] H. Topsøe, B.S. Clausen, F.E. Massoth (Eds.), Hydrotreating Cataly-
sis, Springer-Verlag, Berlin, 1996.
10] T.C. Ho, Catal. Rev.-Sci. Eng. 30 (1988) 117.
11] C.N. Satterfield, Heterogeneous Catalysis in Industrial Practice, sec-
ond ed., McGraw-Hill, New York, 1991, p. 383, Chap. 9.
12] M.J. Girgis, B.C. Gates, Ind. Eng. Chem. Res. 30 (1991) 2021.
[
[
Other minor reactions involved in the aldehyde hydro-
genation network (Scheme 1) in the presence of water in-
clude the reaction of propanal with water to give propionic
acid (P). Further reaction with propanol may lead to ester
formation (Q). Liquid-phase data obtained with and without
water provide evidence of these reaction steps (Fig. 6).
Light products such as C1–C2 alkanes can be produced
from the decarbonylation of propanal. Complete hydrogena-
tion followed by cracking can also lead to the formation of
small hydrocarbons. Light products account for only a very
small percentage of the overall yield loss for these catalysts
and show an increase with increasing Ni loading.
[
[13] G. Perot, Catal. Today 10 (1991) 447.
[
[
14] E. Laurent, B. Delmont, J. Catal. 146 (1994) 281.
15] R. Prins, in: G. Ertl, H. Knozinger, J. Weitkamp (Eds.), Hydrode-
sulfurization, Hydrodenitrogenation, Hydrodeoxygenation, and Hy-
drodechlorination, Handbook of Heterogeneous Catalysis, VCH,
Weinheim, 1997.
[16] S.C. Kim, F.E. Massoth, Ind. Eng. Chem. Res. 39 (2000) 1705.
17] L. Zhang, G. Karakas, U.S. Ozkan, J. Catal. 178 (1998) 457.
18] A. Bunch, L. Zhang, G. Karakas, U.S. Ozkan, Appl. Catal. A: Gen. 190
[
[
(2000) 51.
[
[
19] A. Bunch, U.S. Ozkan, J. Catal. 206 (2002) 177.
20] A.M. Escudey-Castro, L. Broussiers McLeeod, E.J. Gil-Llambias,
Appl. Catal. 4 (1982) 371.
[
21] F.E. Massoth, in: Proc. 4th Int. Conf.: The Chemistry and Uses of
Molybdenum, Golden, Colorado, 1982.
[
[
[
[
[
[
[
22] J. Maternova, Appl. Catal. 3 (1982) 3.
23] G. Muralidhar, F.E. Massoth, J. Shabtai, J. Catal. 85 (1984) 44.
24] F.E. Massoth, J. Catal. 36 (1975) 164.
25] E. Payen, S. Kasztelan, J. Grimblot, J. Mol. Struct. 174 (1988) 71.
26] N.-Y. Topsøe, H. Topsøe, J. Catal. 139 (1993) 641.
27] N.-Y. Topsøe, H. Topsøe, F.E. Massoth, J. Catal. 119 (1989) 252.
28] S.H. Yang, C.N. Satterfield, J. Catal. 81 (1983) 168.
5
. Conclusions
Propanal is shown to be a representative model com-
pound for the study of the hydrogenation reaction of linear
aldehydes. The main reaction in the aldehyde hydrogena-
tion process is the hydrogenation of the C=O double bond,
which takes place over the coordinatively unsaturated sites.
The major side reactions are self-condensation of aldehy-
des and condensation of aldehydes with alcohols. Both re-
actions involve α-hydrogen and are primarily catalyzed by
acid–base bifunctional sites over the exposed Al2O3 sur-
faces. In aldehyde molecules with a branched carbon chain,
such as 2-ethyl-butanal and 2-methyl-pentanal, α-hydrogen
is not readily accessible, making the condensation reactions
much more difficult. The steric hindrance effect exhibited
by branched-chain aldehydes is the main reason for the
low heavy-product selectivities. The similarities between the
trends observed in the gas phase and the liquid phase imply
that the experimental results obtained in the gas phase are
still relevant for industrial applications of similar reactions,
which use primarily liquid feeds.
[29] J. Maternova, Appl. Catal. 6 (1982) 61.
[30] V. Stuchly, L. Baranek, Appl. Catal. 35 (1987) 35.
[31] L. Vivier, S. Kasztelan, G. Perot, Bull. Soc. Chim. Belg. 100 (1991)
01.
8
[32] J. Miciukiewicz, W. Zmierczak, F.E. Massoth, Bull. Soc. Chim.
Belg. 96 (1987) 915.
[33] E. Furimsky, Appl. Catal. 6 (1983) 159.
[34] M.S. Rana, B.N. Srinivas, S.K. Maity, G. Murali Dhar, T.S.R. Prasada
Rao, J. Catal. 195 (2000) 31.
[35] M.S. Rana, S.K. Maity, J. Ancheyta, G. Murali Dhar, T.S.R. Prasada
Rao, Appl. Catal. 258 (2004) 215.
[36] M.W. Vogelzang, C.L. Li, G.A. Schuit, B.C. Gates, L. Petrakis,
J. Catal. 84 (1983) 170.
[37] X. Wang, G. Li, U.S. Ozkan, J. Mol. Catal. 217 (2004) 219.
[
[
[
38] X. Wang, U.S. Ozkan, J. Catal. 227 (2004) 492.
39] X. Wang, U.S. Ozkan, J. Mol. Catal., submitted for publication.
40] U.S. Ozkan, S. Ni, L. Zhang, E. Moctezuma, Energy Fuels 8 (1994)
249.
[41] U.S. Ozkan, L. Zhang, S. Ni, E. Moctezuma, J. Catal. 148 (1994) 181.
[42] U.S. Ozkan, Y. Cai, M.W. Kumthekar, L. Zhang, J. Catal. 142 (1993)
182.
[
[
43] B.F. Sels, D.E. De Vos, P.A. Jacobs, Catal. Rev. 43 (2001) 443.
44] M.J. Climent, A. Corma, R. Guil-Lopez, S. Iborra, J. Primo, J. Ca-
tal. 175 (1998) 70.
References
[
1] J.J. MeKetta, W.A. Cunningham (Eds.), Encyclopedia of Chemical
Processing and Design, vol. 33, New York and Basel, 1990, p. 46.
2] P. Grange, Catal. Rev.-Sci. Eng. 21 (1980) 135.
[45] M.J. Climent, A. Corma, R. Garcia, R. Guil-Lopez, S. Iborra, V. For-
nes, J. Catal. 197 (1998) 385.
[46] M.J. Climent, A. Corma, S. Iborra, A. Velty, J. Mol. Catal. A 182–183
(2002) 327.
[
[
3] J. Laine, F. Severino, R. Golding, J. Chem. Technol. Biotechnol. A 34
(
1984) 387.
[47] D. Tichit, D. Lutic, B. Coq, R. Durand, R. Teissier, J. Catal. 219 (2003)
167.
[
4] H. Topsøe, B.S. Clausen, Catal. Rev.-Sci. Eng. 26 (1984) 395.
[
5] H. Topsøe, B.S. Clausen, R. Candia, C. Wivel, S. Morup, J. Catal. 68
(
[48] P. Gallezot, D. Richard, Catal. Rev.-Sci. Eng. 40 (1998) 81.
[49] B.E. Hanson, L.F. Wiesermand, G.W. Wagner, R.A. Kaufman, Lang-
muir 3 (1987) 549.
[50] A.G. Panov, J.J. Fripiat, J. Catal. 178 (1998) 188.
[51] C.R. Hauser, D.S. Breslow, 62 (1940) 2389.
[52] P. Mastagli, G. Lagrange, Compt. Rend. 244 (1957) 207.
1981) 433.
6] C. Wivel, R. Candia, B.S. Clausen, S. Morup, H. Topsøe, J. Catal. 87
1984) 497.
[
(
[
[
7] H. Topsøe, B.S. Clausen, Appl. Catal. 25 (1986) 273.
8] N.-Y. Topsøe, H. Topsøe, J. Catal. 84 (1983) 386.