4
(a) D. Gelman, L. Jiang and S. L. Buchwald, Org. Lett., 2003,
5, 2315; (b) M. Kalek, A. Ziadi and J. Stawinski, Org. Lett., 2008,
10, 4637; (c) M. Kalek and J. Stawinski, Organometallics, 2008,
27, 5876; (d) M. Kalek, M. Jezowska and J. Stawinski, Adv. Synth.
Catal., 2009, 351, 3207; (e) E. L. Deal, C. Petit and J. L.
Montchamp, Org. Lett., 2011, 13, 3270; (f) X. H. Zhang,
H. Z. Liu, X. M. Hu, G. Tang, J. Zhu and Y. F. Zhao, Org. Lett.,
2011, 13, 3478.
(a) K. S. Petrakis and T. L. Nagabhushan, J. Am. Chem. Soc.,
5
1
2
987, 109, 2831; (b) Y. Luo and J. Wu, Organometallics, 2009,
8, 6823; (c) R. Berrino, S. Cacchi, G. Fabrizi, A. Goggiamani and
P. Stabile, Org. Biomol. Chem., 2010, 8, 4518; (d) M. Andaloussi,
J. Lindh, J. Savmarker, P. J. R. Sjoberg and M. Larhed,
Chem.–Eur. J., 2009, 15, 13069.
¨
¨
6
7
(a) T. Kagayama, A. Nakano, S. Sakaguchi and Y. Ishii,
Org. Lett., 2006, 8, 407; (b) X. J. Mu, J. P. Zou, Q. F. Qian and
W. Zhang, Org. Lett., 2006, 8, 5291.
Scheme 2 Proposed mechanism for the direct phosphonation of azole.
5d,18
in studying many Pd-catalyzed reactions.
After stirring for
For reviews on C–H functionalization, see: (a) C. I. Herrerıas,
´
2
0 min, it was revealed in the ESI/MS spectrum that two mono-
X. Q. Yao, Z. P. Li and C. J. Li, Chem. Rev., 2007, 107, 2546;
(b) X. Chen, K. M. Engle, D. H. Wang and J. Q. Yu, Angew.
Chem., Int. Ed., 2009, 48, 5094; (c) D. A. Colby, R. G. Bergman
and J. A. Ellman, Chem. Rev., 2010, 110, 624; (d) T. W. Lyons and
M. S. Sanford, Chem. Rev., 2010, 110, 1147; (e) C. L. Sun, B. J. Li
and Z. J. Shi, Chem. Rev., 2011, 111, 1293.
R. Lang, J. L. Wu, L. J. Shi, C. G. Xia and F. W. Li, Chem.
Commun., 2011, 47, 12553.
(a) P. H. Xi, F. Yang, S. Qin, D. B. Zhao, J. B. Lan, G. Gao,
C. W. Hu and J. S. You, J. Am. Chem. Soc., 2010, 132, 1822;
¨
(b) L. Ackermann, S. Barfusser and J. Pospech, Org. Lett., 2010,
cationic Pd species, structurally assigned to the major B and
minor E, were detected to be dominant in the reaction mixture
(shown in Scheme 2 and Fig. S1–S4, ESIw). Although,
II
Pd -catalyzed oxidation reactions have been typically recognized
II
0
8
9
to proceed via the Pd /Pd catalytic cycle in the presence of an
19
2
.
oxidant, such as benzoquinone, O , CuCl
2
However, all these
oxidants were inactive for current phosphonation, suggesting that
II
it may not proceed via Pd /Pd , but a Pd /Pd catalytic cycle.
0
II
IV
20
1
9,20
12, 724; (c) W. Han, P. Mayer and A. R. Ofial, Angew. Chem., Int.
Ed., 2011, 50, 2178; (d) M. Kitahara, N. Umeda, K. Hirano,
T. Satoh and M. Miura, J. Am. Chem. Soc., 2011, 133, 2160.
Based on above analysis and other related reports,
a
possible catalytic cycle is drawn in Scheme 2. The reaction is
II
initiated by nucleophilic coordination of the phosphite to Pd
10 (a) N. Matsuyama, M. Kitahara, K. Hirano, T. Satoh and
M. Miura, Org. Lett., 2010, 12, 2358; (b) S. H. Kim, J. Yoon
and S. Chang, Org. Lett., 2011, 13, 1474.
to give the monocationic palladium complex B (or E), which
then coordinates to azole after the disassociation of one (or two)
II
phosphite molecule, generating another Pd complex C, and
1
1
1
1 (a) O. Vechorkin, V. Proust and X. L. Hu, Angew. Chem., Int. Ed.,
010, 49, 3061; (b) T. Yao, K. Hirano, T. Satoh and M. Miura,
2
subsequently its deprotonation/rearrangement takes place in the
IV
presence of K S O , thus affording the Pd intermediate D that
2 2 8
Chem.–Eur. J., 2010, 16, 12307; (c) X. Zhao, G. Wu, Y. Zhang and
J. B. Wang, J. Am. Chem. Soc., 2011, 133, 3296.
2 (a) L. Zhang, J. H. Cheng, T. Ohishi and Z. M. Hou, Angew.
Chem., Int. Ed., 2010, 49, 8670; (b) X. F. Wu, P. Anbarasan,
H. Neumann and M. Beller, Angew. Chem., Int. Ed., 2010,
49, 7316.
3 (a) S. H. Cho, J. Y. Kim, S. Y. Lee and S. Chang, Angew. Chem.,
Int. Ed., 2009, 48, 9127; (b) D. Monguchi, T. Fujiwara,
H. Furukawa and A. Mori, Org. Lett., 2009, 11, 1607;
undergoes reductive elimination to yield the product 3d.
In conclusion, we have discovered the first palladium-
catalyzed oxidative phosphonation of azoles with dialkyl
phosphites in high regioselectivity without additional base or
acid. Such transformation represents an atom-economical alter-
native to traditional phosphonation of Ar–X, which requires the
use of prefunctionalized arene and a stoichiometric amount of
base. The reactions afford a variety of 2-phosphonated azoles in
moderate to good yields and also may point a way to develop
direct phosphonation of other aromatic compounds. Additional
studies on the mechanism and synthetic application are in
progress.
(
c) T. Kawano, K. Hirano, T. Satoh and M. Miura, J. Am. Chem.
Soc., 2010, 132, 6900; (d) M. Miyasaka, K. Hirano, T. Satoh,
R. Kowalczyk, C. Bolm and M. Miura, Org. Lett., 2011, 13, 359.
4 There is only one example on the synthesis of 2a with a yield of
1
4
5% by condensation of ortho-aminophenol and b-phosphoyl-
b-chlorovinylaldehyde, D. Q. Qian, Y. X. Liu, R. Z. Cao and
L. Z. Liu, Phosphorus, Sulfur Silicon Relat. Elem., 2000, 158, 179.
5 For phosphonation of sp C–H bond, see: (a) Y. X. Gao, G. Wang,
L. Chen, P. X. Xu, Y. F. Zhao, Y. B. Zhou and L. B. Han, J. Am.
1
Financial support from the Chinese Academy of Sciences and
the National Natural Science Foundation of China (21002106
and 21133011) is gratefully acknowledged.
3
Chem. Soc., 2009, 131, 7956; for phosphonation of sp C–H bond,
see: (b) O. Basle
c) W. Han and A. R. Ofial, Chem. Commun., 2009, 6023.
6 M. Y. Niu, H. Fu, Y. Y. Jiang and Y. F. Zhao, Chem. Commun.,
007, 272.
´
and C. J. Li, Chem. Commun., 2009, 4124;
(
1
1
2
Notes and references
7 M. C. Kohler, T. V. Grimes, X. P. Wang, T. R. Cundari and
R. A. Stockland, Jr, Organometallics, 2009, 28, 1193.
1
(a) A. Inoue, H. Shinokubo and K. Oshima, J. Am. Chem. Soc.,
2
2
003, 125, 1484; (b) L. Ackermann and A. Althammer, Org. Lett.,
006, 8, 3457.
18 (a) A. A. Sabino, A. H. L. Machado, C. R. D. Correia and
M. N. Eberlin, Angew. Chem., Int. Ed., 2004, 43, 2514;
¨ ¨
(b) J. Lindh, J. Savmarker, P. Nilsson, P. J. R. Sjoberg and
2
3
T. Hirao, T. Masunaga, Y. Ohshiro and T. Agawa, Synthesis,
981, 56.
1
M. Larhed, Chem.–Eur. J., 2009, 15, 4630.
For reviews on C–P bond formation, see: (a) A. L. Schwan, Chem.
Soc. Rev., 2004, 33, 218; (b) S. V. Jeught and C. V. Stevens,
Chem. Rev., 2009, 109, 2672; (c) D. S. Glueck, Top. Organomet.
Chem., 2010, 31, 65; (d) F. M. J. Tappe, V. T. Trepohl and
M. Oestreich, Synthesis, 2010, 3037.
19 (a) K. L. Hull and M. S. Sanford, J. Am. Chem. Soc., 2009,
131, 9651; (b) N. Decharin and S. S. Stahl, J. Am. Chem. Soc.,
2011, 133, 5732.
IV
20 For review on Pd chemistry, see: L. M. Xu, B. J. Li, Z. Yang and
Z. J. Shi, Chem. Soc. Rev., 2010, 39, 712.
This journal is c The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 5181–5183 5183