Y. Kuang, Y. Wang
SHORT COMMUNICATION
the boronic acid to the aldehyde[
3a–3c]
followed by dehy- 21272162). Prof. Dr. Michael P. Doyle is thanked for helpful dis-
drogenative oxidation of an alcohol.[ For the formation
8]
cussions.
of the diarylmethanol coupling product, according to the
mechanism proposed by Gois and co-workers,[
3b]
[1] For recent reviews on Rh-catalyzed addition reactions of aryl-
boronic acids with carbonyl-containing compounds, see: a) F.
Glorius, Angew. Chem. 2004, 116, 3444–3446; Angew. Chem.
Int. Ed. 2004, 43, 3364–3366; b) T. Hayashi, K. Yamasaki,
Chem. Rev. 2003, 103, 2829–2844; c) K. Fagnou, M. Lautens,
the di-
rhodium catalyst activates the boronic acid with the aid of
the phosphane ligand and the base; then, direct transfer
of the phenyl group from the boron to the aldehyde occurs.
Subsequently, the formed diarylmethanol reacts with the
dirhodium catalyst to give a rhodium alkoxide. After β-
hydride elimination of the rhodium alkoxide, the aryl
ketone is produced as the dehydrogenated product. Re-
garding the dehydrogenation and hydrogen-release mecha-
nism, Saito and co-workers previously reported the selec-
tive dehydrogenation of 2-propanol catalyzed by
Chem. Rev. 2003, 103, 169–196, and references cited therein.
I
[
2] For selected examples of Rh -catalyzed 1,2-additions of aryl-
boronic acids with aldehydes, see: a) H. F. Duan, J.-H. Xie,
W.-J. Shi, Q. Zhang, Q.-L. Zhou, Org. Lett. 2006, 8, 1479–
1
481; b) R. B. C. Jagt, P. Y. Toullec, J. G. de Vries, B. L. Fer-
inga, A. Minnaard, J. Org. Biomol. Chem. 2006, 4, 773; c)
S. U. Son, S. B. Kim, J. A. Reingold, G. B. Carpenter, D. A.
Sweigart, J. Am. Chem. Soc. 2005, 127, 12238–12239; d) T.
Focken, J. Rudolph, C. Bolm, Synthesis 2005, 429–436; e) N.
Imlinger, M. Mayr, D. Wang, K. Wurst, M. R. Buchmeiser,
Adv. Synth. Catal. 2004, 346, 1836–1843; f) C. Pourbaix, F.
Carreaux, B. Carboni, Org. Lett. 2001, 3, 803–805; g) R. A.
Batey, A. N. Thadani, D. V. Smil, Org. Lett. 1999, 1, 1683–
[
9]
Rh (OAc) by adding PPh in situ. The unique dirho-
2
4
3
[
3d]
dium complex structure
and the tuning effect of the ax-
may account for this transformation. De-
[
7,10]
ial ligands
tailed mechanistic studies, especially the water effect, are
currently underway in our laboratory.
1
686.
[
3] a) P. M. P. Gois, A. F. Trindade, L. F. Veiros, V. Andre, M. T.
Duarte, C. A. M. Afonso, S. Caddick, F. G. N. Cloke, Angew.
Chem. 2007, 119, 5852–5855; Angew. Chem. Int. Ed. 2007, 46,
5
750–5753; b) A. F. Trindade, P. M. P. Gois, L. F. Veiros, V.
Conclusions
Andre, M. T. Duarte, C. A. M. Afonso, S. Caddick, F. G. N.
Cloke, J. Org. Chem. 2008, 73, 4076–4086; c) A. F. Trindade,
V. Andre, M. T. Duarte, L. F. Veiros, P. M. P. Gois, C. A. M.
Afonso, Tetrahedron 2010, 66, 8494–8502; d) M. P. Doyle,
M. A. McKervey, T. Ye, Modern Catalytic Methods for Or-
ganic Synthesis with Diazo Compounds, Wiley, New York,
1998; e) F. A. Cotton, Inorg. Chem. 1998, 37, 5710–5720.
4] a) R. Huang, K. H. Shaughnessy, Chem. Commun. 2005,
In summary, we developed an effective method for the
synthesis of aryl ketones from arylboronic acids with alde-
hydes in water through a cascade catalytic procedure and
demonstrated that dirhodium complexes with axial phos-
phane ligands are an efficient catalyst combination. We
also found that these coupling reactions are highly de-
pendent on the solvent, and neat water proved to be essen-
tial in these reactions if K CO was used as the base. Fu-
[
[
4
484–4486; b) A. Fürstner, H. Krause, Adv. Synth. Catal.
001, 343, 343–350.
2
2
3
5] a) T. Hirao, D. Misu, T. Agawa, J. Am. Chem. Soc. 1985, 107,
7179–7181; b) C.-H. Jun, H. Lee, J.-B. Hong, J. Org. Chem.
1997, 62, 1200–1201; c) C.-H. Jun, D.-Y. Lee, H. Lee, J.-B.
Hong, Angew. Chem. 2000, 112, 3214–3216; Angew. Chem.
Int. Ed. 2000, 39, 3070–3072; d) T. Ishiyama, H. Kizaki, T.
Hayashi, A. Suzuki, N. Miyaura, J. Org. Chem. 1998, 63,
ture work is aimed at elucidating a detailed mechanism
and the application of this catalyst system.
Experimental Section
4
2
726–4731; e) L. S. Liebeskind, J. Srogl, J. Am. Chem. Soc.
000, 122, 11260–11261; f) C. Zhou, R. C. Larock, J. Am.
General Procedures for Products: Rh
), aldehyde (0.3 mmol, 1.0 equiv.), arylboronic (0.6 mmol,
.0 equiv.), and K CO (0.6 mmol, 1.0 equiv.) were added to a
2 4
(OAc) (0.009 mmol, 3 mol-
Chem. Soc. 2004, 126, 2302–2303; g) Z. Wang, G. Zou, J.
Tang, Chem. Commun. 2004, 1192–1193; h) S. Ko, B. Kang,
S. Chang, Angew. Chem. 2005, 117, 459–461; Angew. Chem.
Int. Ed. 2005, 44, 455–457; i) H. Shimizu, M. Murakami,
Chem. Commun. 2007, 2855–2857.
%
2
2
3
tube. The septum-sealed tube was evacuated and refilled with ni-
trogen three times. Water (1.0 mL) was added by syringe. Then,
tri-n-butylphosphane (0.018 mmol, 6 mol-%) was added with stir- [6] a) G. Mora, S. Darses, J.-P. Genet, Adv. Synth. Catal. 2007,
3
49, 1180–1184; b) N. Imlinger, K. Wurst, M. R. Buchmeiser,
ring. The reaction mixture was heated in an oil bath at 90 °C for
4 h. After cooling down the reaction mixture to ambient tem-
J. Organomet. Chem. 2005, 690, 4433–4440; c) M. Pucheault,
2
S. Darses, J.-P. Genet, J. Am. Chem. Soc. 2004, 126, 15356–
perature, it was extracted with ethyl acetate (3ϫ 5 mL) and
washed with water (2ϫ 10 mL). The ethyl acetate layer was sepa-
rated and dried with Na SO . After evaporation of the solvent,
2 4
the residue was purified by flash column chromatography (ethyl
acetate/hexane) to give the desired diaryl ketone.
1
5357; d) O. Chuzel, A. Roesch, J.-P. Genet, S. Darses, J. Org.
Chem. 2008, 73, 7800–7802.
[
7] F. Trindade, J. A. S. Coelho, C. A. M. Afonso, L. F. Veiros,
P. M. P. Goi s, ACS Catal. 2012, 2, 370–383.
[8] a) A. Friedrich, S. Schneider, ChemCatChem 2009, 1, 72–73;
b) T. C. Johnson, D. J. Morris, M. Wills, Chem. Soc. Rev.
Supporting Information (see footnote on the first page of this arti-
2
010, 39, 81–88; c) G. E. Dobereiner, R. H. Crabtree, Chem.
cle): Experimental procedures, spectroscopic data, and copies of
Rev. 2010, 110, 681–703.
1
13
the H NMR and C NMR spectra.
[
[
9] a) S. Shinoda, T. Kojima, Y. Saito, J. Mol. Catal. 1983, 18,
9
9–104; b) S. Shinoda, Y. Tokushige, T. Kojima, Y. Saito, J.
Mol. Catal. 1982, 17, 81–84.
Acknowledgments
10] S. Tanaka, S. Masaoka, K. Yamauchi, M. Annaka, K. Sakai,
Dalton Trans. 2010, 39, 11218–11226.
Received: October 16, 2013
The authors are grateful for financial support from the National
Natural Science Foundation of China (NSFC) (grant number
Published Online: January 15, 2014
1166
www.eurjoc.org
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2014, 1163–1166