Journal of the American Chemical Society
Page 4 of 5
verified the assignment of the observed 31P NMR signal in the
NMR experiment (Figure 2F). Complex 5 then undergoes
dehydrogenation under the catalytic condition to regenerate the
active complex 1 which then enters into the second catalytic cycle
(Scheme 2). The released aldehyde reacts with an amine to yield
an unstable hemiaminal which releases a molecule of water to
form the final imine product. Although, few studies related to the
mechanistic aspects of the ruthenium catalyzed dehydrogenation
of alcohols are reported, most of them are based on computational
studies, except for few reports.9h,19 This is a rare case of isolation
and structural characterization of possible intermediates in
catalytic dehydrogenation of alcohols.
va-Kostal, A.
Green
Chem.
2015, 17, 2271; (c)
Hasanayn,
F.; Harb, H. Inorg. Chem. 2014, 53, 8334; (d) Ruch, S.; Irrgang, T.; Kempe,
R. Chem. Eur. J., 2014, 20, 41; (e) Srimani, D.; Ben-David, Y.; Milstein, D.
Angew. Chem. Int. Ed., 2013, 52, 14; (f) Zeng, G.; Li, S. Inorg.
Chem., 2011, 50, 10572; (g) Maggi, A.; Madsen, R. Organometallics 2012, 31,
451; (h) Trincado, M.; Banerjee, D.; Grützmacher, H. Energy Environ. Sci.
2014, 7, 2464.
(10) Bullock, R. M. Catalysis without Precious Metals; Wiley-VCH:
Weinheim, 2010.
(11) (a) Fryzuk, M. D.; Ng, J. B.; Rettig, S. J.; Huffman, J. C.; Jonas, K.
Inorg. Chem. 1991, 30, 2437; (b) Kersten, J. L.; Rheingold, A. L.; Theopold,
K. H.; Casey, C. P.; Widenhoefer, R. A.; Hop, C. E. C. A. Angew. Chem., Int.
Ed. 1992, 31, 1341.
(12)(a) Mikhailine, A. A.; Maishan, M. I.; Lough, A. J.; Morris, R. H. J. Am.
Chem. Soc. 2012, 134, 12266; (b) Mikhailine, A. A.; Lough, A. J.; Morris, R.
H. J. Am. Chem. Soc. 2009, 131, 1394; (c) Tondreau, A. M.; Milsmann, C.;
Patrick, A. D.; Hoyt, H. M.; Lobkovsky, E.; Wieghardt, K.; Chirik, P. J. J. Am.
Chem. Soc. 2010, 132, 15046; (d) Sylvester, K. T.; Chirik, P. J. J. Am. Chem.
Soc. 2009, 131, 8772; (e) Lu, L.-Q.; Li, Y.; Junge, K.; Beller, M. Angew.
Chem. Int. Ed. 2013, 52, 8382; (f) Das, S.; Wendt, B.; Möller, K.; Junge, K.;
Beller, M. Angew. Chem.Int. Ed. 2012, 51, 1662; (g) Harman, W. H.; Peters, J.
C. J. Am. Chem. Soc. 2012, 134, 5080; (h) Chakraborty, S.; Brennessel, W. W.
Jones, W. D. J. Am. Chem. Soc., 2014, 136 , 8564; (i) Bonitatibus Jr, P. J.;
Chakraborty,S.; Dohertya, M. D.; Siclovana, O.; Jones,W. D.; Soloveichik,
G. L. Proc. Natl. Acad. Sci. USA, 2015, 112, 1687.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
In conclusion, an unprecedented dehydrogenative coupling of
alcohols and amines to form imines catalyzed by a complex of
earth-abundant manganese is reported. The catalytic reaction
proceeds under neutral conditions with liberation of molecular
hydrogen. A variety of alcohols and amines were employed to
furnish imines in good to excellent yields in an environmentally
friendly method.
A
mechanistic study involving NMR
spectroscopy, intermediate isolation and X-ray crystallography
sheds light on the catalytic mechanism.
(13)(a) Yan, T.; Feringa, B. L.; Barta, K. Nat. Commun. 2014, 5, 5602; (b)
Rösler, S.; Ertl, M.; Irrgang, T.; Kempe, R. Angew. Chem. Int. Ed. 2015, 54,
15046.
ASSOCIATED CONTENT
(14) Selected examples: (a) Bart, S. C.; Lokovsky, E. L.; Chirik, P. J. J. Am.
Chem. Soc. 2004, 126, 13794 (b) Srimani, D.; Diskin-Posner, Y.; Ben-David,
Y.; Milstein, D. Angew. Chem. Int. Ed. 2013, 52, 1413; (c) Langer, R.; Leitus,
G.; Ben-David, Y.; Milstein, D. Angew. Chem. Int. Ed. 2011, 50, 2120; (d)
Langer, R.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Ben-David, Y.;
Milstein, D. Angew. Chem. Int. Ed. 2011, 50, 9948; (e) Zell, T.; Ben-David, Y.;
Milstein, D. Angew. Chem. Int. Ed. 2014, 53, 4685; (f) Lagaditis, P. O.; Sues,
P. E.; Sonnenberg, J. F.; Wan, K. Y.; Lough, A. J.; Morris, R. H. J. Am. Chem.
Soc. 2014, 136, 1367; (g) Zuo, W.; Lough, A. J.; Li, Y. F.; Morris, R. H.
Science 2013, 342, 1080; (h) Fleischer, S.; Zhou, S.; Junge, K.; Beller, M.
Angew. Chem. Int. Ed. 2013, 52, 5120; (i) Chakraborty, S.; Dai, H.; Bhattacha-
rya, P.; Fairweather, N. T.; Gibson, M. S.; Krause, J. A.; Guan, H. J. Am.
Chem. Soc. 2014, 136, 7869; (j) Zell, T.; Milstein, D. Acc. Chem. Res. 2015,
48, 1979; (k) Chakraborty, S.; Lagaditis, P. O.; Förster, M.; Bielinski, E. A.;
Hazari, N.; Holthausen, M. C.; Jones, W. D.; Schneider S. ACS Catal. 2014, 4,
3994.
(15) (a) Rösler, S.; Obenauf, J.; Kempe, R. J. Am. Chem. Soc. 2015, 137, 7998;
(b) Chirik, P. J. Acc. Chem. Res. 2015, 48, 1687; (c) Friedfeld, M. R.; Margu-
lieux, G. W.; Schaefer, B. A.; Chirik, P. J. J. Am. Chem. Soc. 2014, 136, 13178;
(d) Lin, T.-P.; Peters, J. C. J. Am. Chem. Soc. 2014, 136, 13672; (e) Lin, T.-P.;
Peters, J. C. J. Am. Chem. Soc. 2013, 135, 15310; (f) Korstanje,T.J.; van der
Vlugt, J. I.; Elsevier, C. J.; Bruin, B. de Science 2015, 350, 298; (g) Zhang, G.;
Vasudevan, K. V.; Scott, B. L.; Hanson, S. K. J. Am. Chem. Soc. 2013, 135,
8668; (h) Zhang, G.; Scott, B. L.; Hanson, S. K. Angew. Chem. Int. Ed. 2012,
51, 12102; (i) Zhang, G.; Hanson, S. K. Org. Lett. 2013, 15, 650.
Supporting Information
Experimental details of the catalytic reactions, synthesis of the new
complexes and X-ray crystallographic details. This material is available
AUTHOR INFORMATION
Corresponding Author
* david.milstein@weizmann.ac.il
Author Contributions
‡These authors contributed equally.
ACKNOWLEDGMENT
This research was supported by the Israel Science Foundation, the
MINERVA Foundation and the Kimmel Center for molecular design. D.
M. holds the Israel Matz Professorial Chair of Organic Chemistry. A.M.
thanks the Planning and Budgeting Committee (PBC) of the Council for
Higher Education in Israel for a fellowship.
REFERENCES
(16) (a) Mukherjee, A.; Srimani, D.; Chakraborty, S.; Ben-David, Y.; Milstein,
D. J. Am. Chem. Soc. 2015, 137, 8888; (b) Srimani, D.; Mukherjee, A.; Gold-
berg, A. F.; Leitus, G.; Diskin Posner, Y.; Shimon, L. J.; Ben-David, Y.; Mil-
stein, D. Angew. Chem. Int. Ed. 2015, 54, 12357.
(1) (a) Hadjipavlou-Litina, D. J.; Geronikaki, A. A. Drug Des Discov. 1998, 15,
199; (b) Rappoport, Z. J.; Liebman, F. The Chemistry of Hydroxylamines,
Oximes and Hydroxamic Acids. New York: Wiley, 2009, 609.
(17) Selected examples: (a) Sampson, M. D.; Nguyen, A. D.; Grice, K. A.;
Moore, C. E.; Rheingold, A. L.; Kubiak, C. P. J. Am. Chem. Soc. 2014, 136,
5460; (b) Huang, X.; Bergsten, T. M.; Groves, J. T. J. Am. Chem. Soc. 2015,
137, 5300; (c) Liu, W.; Bang, J.; Zhang, Y.; Ackermann, L. Angew. Chem. Int.
Ed. 2015, 54, 14137; (d) Liu, W.; Groves, J. T. Angew. Chem. Int . Ed. 2013,
52, 6024; (e) Yoon,T. P.; Jacobsen, E. N. Science 2003, 299, 1691; (f) He, R.;
Huang, Z.-T.; Zheng, Q.-Y.; Wang, C. Angew. Chem. Int. Ed. 2014, 53, 4950;
(g) Ren, R.; Zhao, H.; Huan, L.; Zhu, C. Angew. Chem. Int. Ed. 2015, 54,
12692; (h) Paradine, S. M.; Griffin, J. R.; Zhao, J.; Petronico, A. L.; Miller, S.
M.; White, M. C. Nat. Chem. 2015, 7, 987; (i) Valyaev, D. A.; Lavigne, G.;
Lugana, N. Coord. Chem. Rev. 2016, 308, 191.
(2) (a) Éll, A. H.; Samec, J. S. M.; Brasse, C.; Bäckvall, J.-E. Chem. Commun.
2002, 1144; (b) Largeron, M.; Chiaroni, A.; Fleury, M.-B. Chem. Eur. J. 2008,
14, 996; (c) Jiang, G.; Chen, J.; Huang, J.-S.; Che, C.-M. Org. Lett. 2009, 11,
4568; (d) Yamaguchi, K.; Mizuno, N. Angew. Chem. Int. Ed. 2003, 42, 1480;
(e) Sonobe, T.; Oisaki, K.; Kanai, M. Chem. Sci. 2012, 3, 3249; (f) Yuan, H.;
Yoo, W.-J.; Miyamura, H.; Kobayashi, S. J. Am. Chem. Soc. 2012, 134, 13970.
(3) (a) Su, F.; Mathew, S. C.; Möhlmann, L.; Antonietti, M.; Wang, X.;
Blechert, S. Angew. Chem. Int. Ed. 2011, 50, 657; (b) Chen, B.; Wang, L.; Dai,
W.; Shang, S.; Lv, Y.; Gao, S. ACS Catal. 2015, 5, 2788; (c) Chen, B.; Wang,
L.; Gao, S. ACS Catal. 2015, 5, 5851.
(4)(a) Blackburn, L.; Taylor, R. J. K. Org. Lett. 2001, 3, 1637; (b) Tamura, M.;
Tomishige, K. Angew. Chem. Int. Ed. 2014, 53, 864.
(5) (a) Pohlki, F.; Doye, S. Angew. Chem. Int. Ed. 2001, 40, 2305; (b) Johnson,
J. S.; Bergman, R. G. J. Am. Chem. Soc. 2001, 123, 2923; (c) Li, Y.; Shi, Y.;
Odom, A. L. J. Am. Chem. Soc. 2004, 126, 1794; (d) Ryken, S. A.; Schafer, L.
L. Acc. Chem. Res. 2015, 48, 2576.
(18) Nerush, A.; Vogt, M.; Gellrich, U.; Leitus, G.; Ben-David, Y.; Milstein, D.
under revision for publication in J. Am. Chem. Soc.
(19) Montag, M.; Zhang, J.; Milstein, D. J. Am. Chem. Soc. 2012, 134, 10325.
(20) (a) Gunanathan, C.; Milstein, D. Chem. Rev. 2014, 114, 12024; (b)
Gunanathan, C.; Milstein, D. Science 2013, 341, 1229712; (c) Gunanathan, C.;
Milstein, D. Acc. Chem. Res. 2011, 44, 588; (d) Khusnutdinova, J. R.; Milstein,
D. Angew. Chem. Int. Ed. 2015, 54, 12236.
(21) (a) Li, H.; Hall, M. B. ACS Catal. 2015, 5, 1895; (b) Hasanayn, F.; Harb,
H. Inorg. Chem. 2014, 53, 8334; (c) Hasanayn, F.; Baroudi, A.
Organometallics 2013, 32, 2493.
(6)(a) Srimani; D.; Feller, M.; Ben-David, Y.; Milstein, D. Chem. Commun.
2012, 48, 11853; (b) Chakraborty, S.; Berke, H. ACS Catal. 2014, 4, 2191.
(7) Barta, K.; Ford,P. C. Acc. Chem Res. 2014, 47, 1503.
(8) Gnanaprakasam, B.; Zhang, J.; Milstein, D. Angew. Chem. Int. Ed. 2010,
49, 1468.
(9) Selected examples: (a) Saha, B.; Rahaman, S. M. W.; Daw, P.; Sengupta,
G.; Bera, J. K. Chem. Eur. J. 2014, 20, 6542; (b) Bain, J.; Cho, P.; Voutchko-
ACS Paragon Plus Environment