C O M M U N I C A T I O N S
Table 1. Organolanthanide-Catalyzed Ethylene Polymerization in
the Presence of HPPh2
synthesis is similar to that observed for intramolecular phosphi-
noalkene hydrophosphination/cyclization:8c Y > Sm, Lu > La.15
In addition, the characteristic orange color of the Y-based polym-
erization solutions during turnover suggests that the catalyst resting
state is a lanthanide-phosphido species (rather than an alkyl).8,12
In summary, diphenylphosphine is shown to be an efficient chain
transfer agent in organolanthanide-catalyzed ethylene polymeriza-
tion, yielding phosphine-terminated polyethylenes. This reaction
is a versatile, efficient way of incorporating an electron-rich
functional group into an otherwise inert polymer. Further investiga-
tions of scope and mechanism are currently in progress.
d
[precat.] [HPPh2]
yield
(g)
activityb
107)
Tm
C)
c
c
entry
precatalysta
(
µM)
(mM)
(
×
Mn
Mw/Mn
(
°
1
2
3
4
5
6
7
8
Cp2′LuR
Cp′2YR
Cp′2SmR
Cp′2LaR
Cp′2YPPh2
Cp′2YPPh2
Cp′2YPPh2
Cp′2YPPh2
Cp′2YPPh2
Cp′2YPPh2
Cp′2YPPh2
79
78
83
85
36
36
39
35
35
35
33
20
20
20
20
22
45
67
89
0.25
0.70
0.27
0.73
2.1
0.76
-
3.1
2.9
2.9
2.7
2.3
1.5
0.46
37500
25500
18900
-
29500
18800
12500
11000
9400
1.6
1.9
2.1
-
1.8
2.2
2.3
2.4
2.3
2.3
2.0
137.9
137.6
137.3
-
137.6
137.2
136.4
135.3
134.9
134.6
130
e
-
0.48
0.45
0.48
0.41
0.35
0.23
0.070
9
10
11
121
154
418
7100
3100
Acknowledgment. Financial support by the NSF (Grant No.
CHE-0078998) is gratefully acknowledged. We thank Dr. R.
Lepointe of Dow Chemical and Dr. T. R. Jensen for helpful
discussions.
a Cp′ ) η5-Me5C5, R ) CH(SiMe3)2; polymerization conditions: 50 mL
of toluene, average temperature ) 21 °C (see Supporting Information for
details), 30 s. b Units ) g/(mol Ln‚atm ethylene‚h). c By GPC in 1,2,4-
trichlorobenzene vs polyethylene standards. d By DSC. e Trace yields of
polymer obtained (<10 mg).
Supporting Information Available: Detailed experimental pro-
cedures are provided. This material is available free of charge via the
References
(1) Post-polymerization modification: (a) Sheng, Q.; Sto¨ver, H. D. H.
Macromolecules 1997, 30, 6451. (b) Chung, T. C.; Lu, H. L.; Li, C. L.
Macromolecules 1994, 27, 7533. (c) Shiono, T.; Kurosawa, H.; Ishida,
O.; Soga, K. Macromolecules 1993, 26, 2085.
(2) For recent developments in olefin copolymerization with functional
monomers, see: (a) Jensen, T. R.; Yoon, S. C.; Dash, A. K.; Luo L.;
Marks, T. J. J. Am. Chem. Soc. 2004, 125, 14482. (b) Dong, J. Y.; Manias,
E.; Chung, T. C. Macromolecules 2002, 35, 3439. (c) Imuta, J.-I.; Kashiwa,
N.; Toda, Y. J. Am. Chem. Soc. 2002, 124, 1176. (d) Byun, D.-J.; Choi,
K.-Y.; Kim, S. Y. Macromol. Chem. Phys. 2001, 202, 992. (e) Desurmont,
G.; Tanaka, M.; Li, Y.; Yasuda, H.; Tokimitsu, T.; Tone, S.; Yanagase,
A. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 4095.
(3) Graft polymerization: (a) Dong, J. Y.; Hong, H.; Chung, T. C.; Wang,
H. C.; Datta, S. Macromolecules 2003, 36, 6000. (b) Passaglia, E.; Coiai,
S.; Aglietto, M.; Ruggeri, G.; Ruberta`, M.; Ciardelli, F. Macromol. Symp.
2003, 198, 147. (c) Dolatkhani, M.; Cramail, H.; Deffieux, A.; Santos, J.
M.; Ribeiro, M. R.; Bordado, J. M. Macromol. Chem. Phys. 2003, 204,
1889. (d) Ciolino, A. E.; Failla, M. D.; Valle´s, E. M. J. Polym. Sci., Part
A: Polym. Chem. 2002, 40, 3950.
(4) Borane chain transfer: (a) Bowden, N. B.; Dankova, M.; Wiyatno, W.;
Hawker, C. J.; Waymouth, R. M. Macromolecules 2002, 35, 9246. (b)
Chung, T. C.; Xu, G.; Lu, Y.; Hu, Y. Macromolecules 2001, 34, 8040.
(c) Xu, G.; Chung, T. C. J. Am. Chem. Soc. 1999, 121, 6763.
(5) Aluminum chain transfer: (a) Go¨tz, C.; Rau, A.; Luft, G. Macromol.
Mater. Eng. 2002, 287, 16. (b) Kukral, J.; Lehmus, P.; Klinga, M.; Leskela¨,
M.; Rieger, B. Eur. J. Inorg. Chem. 2002, 1349. (c) Han, C. J.; Lee, M.
S.; Byun, D.-J.; Kim, S. Y. Macromolecules 2002, 35, 8923. (d) Liu, J.;
Støvneng, J. A.; Rytter, E. J. Polym. Sci., Part A: Polym. Chem. 2001,
39, 3566. (e) Po’, R.; Cardi, N.; Abis, L. Polymer 1998, 39, 959. (f) Kang,
K. K.; Shiono, T.; Ikeda, T. Macromolecules 1997, 30, 1231.
(6) Thiophene C-H chain transfer: Ringelberg, S. N.; Meetsma, A.; Hessen,
B.; Teuben, J. H. J. Am. Chem. Soc. 1999, 121, 6082.
(7) Silane chain transfer: (a) Koo, K.; Marks, T. J. J. Am. Chem. Soc. 1999,
121, 8791. (b) Koo, K.; Fu, P.-F.; Marks, T. J. Macromolecules 1999,
32, 981.
(8) (a) Kawaoka, A. M.; Douglass, M. R.; Marks, T. J. Organometallics 2003,
22, 4630. (b) Douglass, M. R.; Ogasawara, M.; Hong, S.; Metz, M. V.;
Marks, T. J. Organometallics 2002, 21, 283. (c) Douglass, M. R.; Stern,
C. L.; Marks, T. J. J. Am. Chem. Soc. 2001, 123, 10221. (d) Douglass,
M. R.; Marks, T. J. J. Am. Chem. Soc. 2000, 122, 1824.
(9) Recent reviews of organolanthanide-catalyzed polymerization: (a) Gro-
mada, J.; Carpentier, J.-F.; Mortreux, A. Coord. Chem. ReV. 2004, 248,
397. (b) Hou, Z.; Wakatsuki, Y. Coord. Chem. ReV. 2002, 231, 1.
(10) Fu, P.-F.; Marks, T. J. J. Am. Chem. Soc. 1995, 117, 10747.
(11) (a) Ryu, J.-S.; Marks, T. J.; McDonald, F. E. J. Org. Chem. 2004, 69,
1038. (b) Hong, S.; Kawaoka, A. M.; Marks, T. J. J. Am. Chem. Soc.
2003, 125, 15878. (c) Ryu. J.-S.; Li, G. Y.; Marks, T. J. J. Am. Chem.
Soc. 2003, 125, 12584. (d) Gagne´, M. R.; Stern, C. L.; Marks, T. J. J.
Am. Chem. Soc. 1992, 114, 275.
(12) Jeske, G.; Lauke, H.; Mauermann, H.; Swepston, P. N.; Schumann, H.;
Marks, T. J. J. Am. Chem. Soc. 1985, 107, 8091-8103.
(13) See Supporting Information for details.
(14) Davies, J. A.; Mierzwiak, J. G.; Syed, R. J. Coord. Chem. 1988, 17, 25.
(15) Only trace amounts of polymer are obtained using Cp′2LaCH(SiMe3)2 as
precatalyst.
Figure 2. Relationship of polyethylene number average molecular weight
(GPC versus polyethylene) to inverse HPPh2 concentration at fixed catalyst
and ethylene concentrations.
chain end resonances are absent in 1H and 13C NMR spectra,
suggesting that chain termination via â-H elimination is not
significant. Furthermore, the ∼1:1 PPh2 and -CH3 chain end
resonance ratio implies that a phosphine moiety terminates each
polymer chain. For comparison, the 1H, 13C, and 31P NMR spectra
of the model product 1-eicosyldiphenylphosphine oxide (2; Figure
1a)14 are in good agreement with the polymer spectral assignments.
Polymerization and product characterization data (Table 1) reveal
surprisingly high polymerization activities, which are not ap-
preciably depressed over a ∼20-fold increase in phosphine con-
centration. In comparison, the highest activity observed for
organolanthanide-mediated ethylene polymerization in the presence
of phenylsilane (0.02 M) is 8.97 × 105 g of polymer/(mol Ln‚atm
ethylene‚h).7 Narrow monomodal polydispersities are also observed
in the present case, consistent with a single-site process. At constant
[catalyst] and [ethylene], molecular weight is inversely proportional
to phosphine concentration (Table 1, entries 6-11; Figure 2),
supporting a chain transfer mechanism as in Scheme 1b. With
respect to metal ion size effects, it can be seen that product Mn
increases with decreasing lanthanide ionic radius, most likely
reflecting the steric constraints of the growth-limiting chain transfer
process (Scheme 1b, step iii), involving a crowded transition state
(II). Consistent with these results is the previous observation, for
lanthanide-mediated hydrophosphination, that Ln-C protonolysis
is more rapid for larger metal radii.8c Furthermore the metal ionic
radius-activity trend for the present phosphine-capped polyethylene
JA045965N
9
J. AM. CHEM. SOC. VOL. 126, NO. 40, 2004 12765