286
T.C. Rozada et al. / Spectrochimica Acta Part A 94 (2012) 277–287
Table 7
Main exchange orbital interactions energies (kcal mol−1) calculated at the B3LYP/aug-cc-pVDZ level (LanL2DZ-ECP for iodine) for 1–4.
Compound
Conformer
Orbital interaction
X → ꢀC
→
ÁX → ÁO
ÁX → ꢀC
ÁX
→
ÁO
→
˙
C
O
C
X
C
O
O
C
O
C X
1
I
II
III
IV
3.29
1.04
–
–
–
–
0.52
–
0.72
–
–
–
–
–
–
0.96
1.01
4.01
2.37
2.07
1.64
1.33
0.59
0.63
–
–
–
–
2
3
4
I
II
III
IV
5.01
2.68
1.01
–
–
–
–
0.70
1.49
1.15
–
0.59
–
–
–
–
–
–
1.23
1.49
6.16
3.99
4.13
4.40
1.31
0.60
0.84
0.58
I
II
III
IV
5.77
3.37
1.36
0.63
–
–
–
0.58
1.36
1.06
–
0.68
–
–
–
–
0.61
–
–
1.39
1.75
6.83
4.34
4.80
5.46
0.97
0.79
1.11
I
II
III
6.26
4.57
1.76
–
0.76
0.83
–
–
–
0.95
–
0.75
–
–
–
–
–
1.18
7.21
5.33
4.52
the deletions can also be attributed to the small exchange energy
observed for this conformer.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
4. Conclusion
References
For 1, the IR analysis and the theoretical calculations indicated
the preference for conformer II in more apolar media, while the
increase in the solvent polarity favored conformer III, which has
a greater dipole moment. The preference of compound 2 in apo-
lar media was for conformer I, with an increase in the percentage
of III in the equilibrium with the increase in the polarity of the
medium until this conformer became the most stable in CH3CN.
For 3, the preference for conformer I was greater than in 2, and
although the percentage of III increased with the medium polar-
ity, it was smaller than the percentage of I. For 4, the preference
for I was more pronounced, indicating that the increase in the vol-
ume of the substituted halogen favors I in the equilibrium of the
2-halocycloheptanones and that the increase in the polarity of the
medium starts to contribute less to the conformational preference,
as the more polar conformers start to have higher relative energy
in relation to the more stable conformer with the increase in the
halogen.
[1] N.L. Allinger, M.T. Trible, M.A. Miller, Tetrahedron 28 (1972) 1173–1190.
[2] D.F. Bocian, H.L. Strauss, J. Chem. Phys. 67 (1977) 1071–1081.
[3] J. Dillen, J. Mol. Struct. (Theochem) 959 (2010) 62–65.
[4] R. Borghi, M.A. Cremonini, L. Lunazzi, G. Placucci, J. Am. Chem. Soc. 116 (1994)
11147–11148.
[5] N. Faska, A. Auhmani, M. Essefar, J. Mol. Struct. (Theochem) 811 (2007) 203–213.
[6] E.J. Corey, J. Am. Chem. Soc. 75 (1953) 2301–2304.
[7] R. Borsdorf, R. Heckel, M. Mühlstädt, Z. Chem. 5 (1965) 25–26.
[8] S. Stavber, M. Zupan, Tetrahedron Lett. 37 (1996) 3591–3594.
[9] M. Lautens, G. Bouchain, Org. Synth. 79 (2002) 251.
[10] K. Tanemura, T. Suzuki, Y. Nishida, K. Satsumabayashi, T. Horaguchi, Chem.
Commun. (2004) 470–471.
[11] D.N. Harpp, L.Q. Bao, C.J. Black, J.G. Gleason, R.A. Smith, J. Org. Chem. 40 (1975)
3420–3427.
[12] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheese-
man, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S.
Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P.
Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Strat-
mann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K.
Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich,
A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari,
J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Ste-
fanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith,
M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. John-
son, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision D 02,
Gaussian Inc., Wallingford, CT, 2004.
The preference observed in the vacuum can be understood
based on the orbital interactions involving ꢀ*C
orbital, mainly
O
the ÁX → ꢀ*C and
X → ꢀ*C interactions. These interactions
O
C
O
increase with the increase in the halogen, according to the capacity
of each substituent to act as a sigma electron donor. However, the
halogen volume also influences the repulsion interactions, as the
steric interactions also do. In 1, even with the greater stabilizing
effect observed in I, conformer II was the most stable, which can
be justified by the smaller exchange energy observed in this con-
former. For 2–4, even though conformer II has a smaller exchange
[13] A.D. Becke, J. Chem. Phys. 98 (1993) 5648–5652.
[14] T.H. Dunning Jr., J. Chem. Phys. 90 (1989) 1007–1023.
[15] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82 (1985) 270–283.
[16] R. Cammi, B. Mennucci, J. Tomasi, J. Phys. Chem. A 104 (2000) 5631–5637.
[17] M. Head-Gordon, J.A. Pople, M.J. Frisch, Chem. Phys. Lett. 153 (1988)
503–506.
energy, the contribution of the stabilizing effect of the
interaction compensates the greater destabilizing effects present in
X → ꢀ*C
C
O
[18] R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72 (1980)
650–654.
[19] M.T. Cancès, B. Mennucci, J. Tomasi, J. Chem. Phys. 107 (1997) 3032–3041.
[20] E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J.A. Bohmann, C.M.
Morales, F. Weinhold, NBO 5.G, Theoretical Chemistry Institute, University of
[21] C.H. Langley, J. Lii, N.L. Allinger, J. Comput. Chem. 22 (2001) 1451–1475.
[22] Y. Pan, J.B. Stothers, Can. J. Chem. 45 (1967) 2943–2944.
[23] M.P. Freitas, C.F. Tormena, R. Rittner, R.J. Abraham, Spectrochim. Acta A 59
(2003) 1783–1789.
[24] C.F. Tormena, M.P. Freitas, R. Rittner, R.J. Abraham, J. Phys. Chem. A 108 (2004)
5161–5168.
[25] C.R. Martins, R. Rittner, C.F. Tormena, J. Mol. Struct. (Theochem) 728 (2005)
79–84.
I.
Acknowledgments
The authors would like to thank the Brazilian Council for Sci-
entific and Technological Development (CNPq) for the fellowship
for E.A.B. and R.R. Thanks also go to Fundac¸ ão Araucária (Grant
06/2011-Prot. 18070) and FAPESP (Grant 05/59649-0) for financial
support and to the Coordination for the Improvement of Higher
Education Personnel (CAPES) for the scholarship for T. C. Rozada.
[26] C.F. Tormena, F. Yoshinaga, T.R. Doi, R. Rittner, Spectrochim. Acta A 63 (2006)
511–517.