Please do not adjust margins
ChemComm
Page 4 of 6
DOI: 10.1039/C8CC01059E
COMMUNICATION
Journal Name
4c
Lett. 2012, 14, 1760; e) N. Kuhl, M. N. Hopkinson, J. Wencel-
Delord, F. Glorius, Angew. Chem. Int. Ed. 2012, 51, 10236; e) Y. H.
Zhang, B. F. Shi, J. Q. Yu, J. Am. Chem. Soc. 2009, 131, 5072.
where an electrophilic palladium catalyst was employed, no
phenol products were observed. Interestingly, the chloro and
enolizable methyl ketone substituted thiophene moieties were
also tolerated in this transformation, which provides a
straightforward route for further elaboration of complicated
phenol molecules.
6
For reviews and selected examples of Pd-catalyzed direct
dehydrogenation of ketone, see: a) J. Muzart, Eur. J. Org. Chem.
2010, 3779; b) W. Gao, Z. He, Y. Qian, J. Zhao, Y. Huang, Chem.
Sci. 2012, 3, 883; c) T. Diao, T. J. Wadzinski, S. S. Stahl, Chem. Sci.
2012, 3, 887; d) T. Diao, S. S. Stahl, J. Am. Chem. Soc. 2011, 133,
14566; e) Y. Shvo, A. H. I. Arisha, J. Org. Chem. 1998, 63, 5640.
In conclusion, we have developed palladium catalyzed
dehydrogenative cross-coupling of cyclic enones with
thiophenes to prepare β-thienyl cyclic enone molecules.
Remarkable regioselectivity and high functional group
compatability were achieved. The resulting β-thienyl
cyclohexenone compounds could be derivatized to useful
meta-heteroarylated phenol derivatives. We expect that these
dehydrogenative cross-coupling processes will provide new
routes to construct meta-heteroarylated phenol scaffolds with
omnipotent uses in synthetic and medicinal applications.
This work was financially supported by the National Natural
Science Foundation of China (21502106, 21601111) and the
National Natural Science Foundation for Young Scientists of
Shanxi Province (201701D221028). We are also very grateful
for the test platform provided by Scientific Instrument Center
of Shanxi University.
7
a) A. B. Weinstein, J. A. Ellman, Org. Lett. 2016, 18, 3294; b) X.
Y. Shi, C. J. Li, Org. lett. 2013, 15, 1476; c) J. A. Jordan-Hore, J. N.
Sanderson, A. L. Lee, Org. Lett. 2012, 14, 2508; d) A. L.
Gottumukkala, K. Matcha, M. Lutz, J. G. de Vries, A. J. Minnaard,
Chem. Eur. J. 2012, 18, 6907; e) K. Kikushima, J. C. Holder, M.
Gatti, B. M. Stoltz, J. Am. Chem. Soc. 2011, 133, 6902; f) S. H. Lin,
X. Y. Lu, Org. Lett. 2010, 12, 2536; g) T. Nishitaka, Y. Yamamoto,
N. Miyaura, Chem. Lett. 2007, 36, 1442; h) F. Gini, B. Hessen, A. J.
Minnaard, Org. Lett. 2005, 7, 5309; i) T. Nishikata, Y. Yamamoto,
N. Miyaura, Angew. Chem., Int. Ed. 2003, 42, 2768.
8
2015, 7, 1270; b) N. Gigant, J.-E. Bäckvall, Chem. Eur. J. 2014, 20,
5890; c) Y. Moon, D. Kwon, S. Hong, Angew. Chem. Int. Ed. 2012
51, 11333.
a) L. G. Y. Chung, N. A. B. Juwaini, J. Seayad, ChemCatChem
,
9
a) Y. F. Liang, S. Song, L. S. Ai, X. W. Li, N. Jiao, Green Chem.,
2016, 18, 6462; b) J. W. Zhang, Q. Q. Jiang, D. J. Yang, X. M. Zhao,
Y. L. Dong, R. H. Liu, Chem. Sci., 2015, 6, 4674.
10 For selected examples by using prefunctionalized aryl
surrogates, see: a) S. E. Walker, J. Boehnke, P. E. Glen, S. Levey, L.
Patrick, J. A. Jordan- Hore, A. L. Lee, Org. Lett. 2013, 15, 1886; b)
A. L. Gottumukkala, J. F. Teichert, D. Heijnen, N. Eisink, S. van
Dijk, C. Ferrer, A. van den Hoogenband, A. J. Minnaardb, J. Org.
Chem. 2011, 76, 3498; c) Y. Fall, H. Doucet, M. Santelli,
Tetrahedron 2009, 65, 489; d) K. S. Yoo, C. H. Yoon, K. W. Jung, J.
Am. Chem. Soc. 2006, 128, 16384; e) X. Lu, S. Lin, J. Org. Chem.
2005, 70, 9651; f) D. Tanaka, A. G. Myers, Org. Lett. 2004, 6, 433;
g) T. R. Krishna, N. Jayaraman, Tetrahedron 2004, 60, 10325; h) T.
Notes and references
1
a) C. G. Jia, T. Kitamura, Y. Fujiwara, Acc. Chem. Res. 2001,
34, 633; b) C. G. Jia, D. P. Piao, J. Oyamada, W. J. Lu, T. Kitamura,
Y. Fujiwara, Science 2000, 287, 1992; c) C. G. Jia, W. J. Lu, T
Kitamura, Y. Fujiwara, Org. Lett. 1999, 1, 2097; d) Y. Fujiwara, I.
Moritani, S. Danno, R. Asano, S. Teranishi, J. Am. Chem. Soc.
1969, 91, 7166; e) I. Moritani, Y. Fujiwara, Tetrahedron Lett.
1967, 8, 1119.
Nishikata, Y. Yamamoto, N. Miyaura, Angew. Chem. Int. Ed. 2003
42, 2768.
,
2
For selected reviews and examples, see: a) L. H. Zhou, W. J.
11 a) Y. D. Yang, J. B. Lan, J. S. You, Chem. Rev., 2017, 117, 8787;
b) N. N. Li, Y. L. Zhang, S. Mao, Y. R. Gao, D. D. Guo, Y. Q. Wang,
Org. Lett., 2014, 16, 2732; c) K. Masui, H. Ikegami, A. Mori, J. Am.
Chem. Soc., 2004, 126, 5074.
12 a) D. Pun, T. Diao, S. S. Stahl, J. Am. Chem. Soc. 2013, 135,
8213; b) Z. X. Huang, G. B. Dong, J. Am. Chem. Soc. 2013, 135,
17747; c) Y. Izawa, D. Pun, S. S. Stahl, Science 2011, 333, 209.
Lu, Chem. Eur. J. 2014, 20, 634; b) S. I. Kozhushkov, L. Ackermann,
Chem. Sci. 2013, 4, 886; c) P. B. Arockiam, C. Bruneau, P. H.
Dixneuf, Chem. Rev. 2012, 112, 5879; d) J. Le Bras, J. Muzart,
Chem. Rev. 2011, 111, 1170; e) T. Satoh, M. Miura, Chem. Eur. J.
2010, 16, 11212; f) M. Dams, D. E. De Vos, S. Celen, P. A. Jacobs,
Angew. Chem. Int. Ed. 2003, 42, 3512; g) T. Yokota, M. Tani, S.
Sakaguchi, Y. Ishii, J. Am. Chem. Soc. 2003, 125, 1476.
13 a) K. M. Engle, D. H. Wang, J. Q. Yu, J. Am. Chem. Soc. 2010
,
3
a) S. Radomkit, A. H. Hoveyda, Angew. Chem. Int. Ed. 2014,
132, 14137; b) Y. Lu, D. H. Wang, K. M. Engle, J. Q. Yu, J. Am.
Chem. Soc. 2010, 132, 5916; c) D. H. Wang, K. M. Engle, B. F. Shi,
J. Q. Yu, Science 2010, 327, 315; d) X. Wang, Y. Lu, H. X. Dai, J. Q.
Yu, J. Am. Chem. Soc. 2010, 132, 12203; e) Z. K. Wen, Y. H. Xu, T.
P. Loh, Chem. Sci., 2013, 4, 4520; f) Q. J. Liang, C. Yang, F. F.
53, 3387; b) P. Kwiatkowski, K. Dudziński, D. Łyżwa, Org. Lett.
2011, 13, 3624; c) S. Kehrli, D. Martin, D. Rix, M. Mauduit, A.
Alexakis, Chem. Eur. J. 2010, 16, 9890; d) I. H. Chen, L. Yin, W.
Itano, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2009, 131,
11664; e) M. E. Jimenez, K. Bush, J. Pawlik, L. Sower, J. W.
Peterson, S. R. Gilbertson, Bioorg. Med. Chem. Lett. 2008, 18,
4215; f) F. J. Moreno-Dorado, F. M. Guerra, F. J. Aladro, J. M.
Bustamante, Z. D. Jorge, G. M. Massanet, Tetrahedron 1999, 55,
6997.
Meng, B. Jiang, Y. H. Xu, T. P. Loh, Angew. Chem. Int. Ed. 2017
56, 5091.
,
14 For selected examples, see: a) B. J. Gorsline, L. Wang, P. Ren,
B. P. Carrow, J. Am. Chem. Soc. 2017, 139, 9605; b) T. Morita, T.
Satoh, M. Miura, Org. Lett. 2015, 17, 4384; c) A. Vasseur, C.
For recent examples, see: a) T. Boibessot, C. P. Zschiedrich, A.
4
Laugel, D. Harakat, J. Muzart, J. Le. Bras, Eur. J. Org. Chem. 2015
,
Lebeau, D. Bénimèlis, C. Dunyach-Rémy, J. P. Lavigne, H.
Szurmant, Z. Benfodda, P. Meffre, J. Med. Chem. 2016, 59, 8830;
b) T. Diao, D. Pun, S. S. Stahl, J. Am. Chem. Soc. 2013, 135, 8205;
c) Y. Izawa, C. Zheng, S. S. Stahl, Angew. Chem. Int. Ed. 2013, 52,
3672; d) M. O. Simon, S. A. Girard, C. J. Li, Angew. Chem. Int. Ed.
2012, 51, 7537; e) S. Quideau, D. Deffieux, C. Douat-Casassus, L.
Pouységu, Angew. Chem. Int. Ed. 2011, 50, 586.
944; d) C. Y. He, C. Z. Wu, Y. L. Zhu, X. G. Zhang, Chem. Sci., 2014
,
5, 1317; e) Y. P. Shang, X. M. Jie, J. Zhou, P. Hu, S. J. Huang, W. P.
Su, Angew. Chem. Int. Ed. 2013, 52, 1299; f) C.Y. He, Z. Wang, C.
Z. Wu, F. L. Qing, X. G. Zhang, Chem. Sci., 2013, 4, 3508; g) Y. X.
Zhang, Z. J. Li, Z. Q. Liu, Org. Lett., 2012, 14, 226; h) A. Vasseur, J.
Muzart, J. Le. Bras, Chem. Eur. J. 2011, 17, 12556; i) C. Y. He, S. L.
Fan, X. G. Zhang, J. Am. Chem. Soc. 2010, 132, 12850; j) P. H. Xi, F.
Yang, S. Qin, D. B. Zhao, J. B. Lan, G. Gao, C. W. Hu, J. S. You, J.
Am. Chem. Soc. 2010, 132, 132, 1822; k) A. Maehara, H. Tsurugi,
T. Satoh, M. Miura, Org. Lett. 2008, 10, 1159.
5
a) P. Wang, P. Verma, G. Q. Xia, J. Shi, J. X. Qiao, S. W. Tao, P.
T. W. Cheng, M. A. Poss, M. E. Farmer, K. S. Yeung, J. Q. Yu,
Nature 2017, 551, 489; b) J. F. Hartwig, M. A. Larsen, ACS Cent.
Sci. 2016, 2, 281; c) C.-H. Ying, S. B. Yan, W. L. Duan, Org. Lett.
2014, 16, 500; d) A. Kubota, M. H. Emmert, M. S. Sanford, Org.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins