C O M M U N I C A T I O N S
Table 2. Scope of Substrates
References
(
1) For recent reviews, see: (a) Katsuki, T. In ComprehensiVe Asymmetric
Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer:
Berlin, 1999; Vol. 2, p 621. (b) Katsuki, T.; Ojima, I. Org. React. 1996,
4
8, 1. (c) Keith, J. M.; Larrow, J. F.; Jacobsen, E. N. AdV. Synth. Catal.
2
001, 343, 5. (d) Adam, W.; Saha-M o¨ ller, C. R.; Ganeshpure, P. A. Chem.
ReV. 2001, 101, 3499. (e) Adam, W.; Malisch, W.; Roschmann, K. J.;
Saha-M o¨ ller, C. R.; Schenk, W. A. J. Organomet. Chem. 2002, 661, 3.
(
f) Lattanzi, A.; Scettri, A. J. Organomet. Chem. 2006, 691, 2072. (g)
Shi, Y. Acc. Chem. Res. 2004, 37, 488. (h) Shi, Y.; Frohn, M. Synthesis
000, 14, 1979.
2
(
2) (a) Katsuki, T; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974. (b)
Rossiter, B. E.; Sharpless, K. B. J. Org. Chem. 1984, 49, 3707. (c) Gao,
Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless,
K. B. J. Am. Chem. Soc. 1987, 109, 5765.
(
3) For Zr-catalyzed epoxidation of homoallylic alcohols, see: (a) Ikegami,
S.; Katsuki, T.; Yamaguchi, M. Chem. Lett. 1987, 83. (b) Okashi, T.;
Murai, N.; Onaka, M. Org. Lett. 2003, 5, 85.
(
4) Makita, N.; Hoshino, Y.; Yamamoto, H. Angew. Chem., Int. Ed. 2003,
42, 941.
(
5) For a related epoxidation of allylic alcohols, see: (a) Murase, Y.; Hoshino,
Y.; Oishi, M.; Yamamoto, H. J. Org. Chem. 1999, 64, 338. (b) Hoshino,
Y.; Murase, N.; Oishi, M.; Yamamoto, H. Bull. Chem. Soc. Jpn. 2000,
7
3, 1653. (c) Hoshino, Y.; Yamamoto, H. J. Am. Chem. Soc. 2000, 122,
10452.
(6) Zhang, W.; Basak, A.; Kosugi, Y.; Hoshino, Y.; Yamamoto, H. Angew.
Chem., Int. Ed. 2005, 44, 4389.
(
7) For recent reports on chiral vanadium catalyst for epoxidation, see: (a)
Bryliakov, K. P.; Talsi, E. P. Kinet. Katal. 2003, 44, 334. (b) Bolm, C.;
Kuhn, T. Synlett 2000, 899. (c) Traber, B.; Jung, Y. G.; Park, T. K.; Hong,
J. I. Bull. Korean Chem. Soc. 2001, 22, 547. (d) Wu, H. L.; Uang, B. J.
Tetrahedron: Asymmetry 2002, 13, 2625. (e) Bourhani, Z.; Malkov, A.
V. Chem. Commun. 2005, 4592. (f) Lattanzi, A.; Piccirillo, S.; Scettri, A.
Eur. J. Org. Chem. 2005, 1669.
(
8) For recent reviews on vanadium, see: (a) Hirao, T. Chem. ReV. 1997, 97,
2
707. (b) Bolm, C. Coord. Chem. ReV. 2003, 237, 245. (c) Ligtenbarg,
A. G.; Hage, R.; Feringa, B. L. Coord. Chem. ReV. 2003, 237, 89.
a
All reactions were carried out in toluene in the presence of 1.5 equiv
(
9) For mechanistic study on vanadium-hydroxamic acid oxidation, see: (a)
Bryliakov, K. P.; Talsi, E. P. Kinet. Katal. 2003, 44, 334. (b) Bryliakov,
K. P.; Talsi, E. P.; Kuehn, T.; Bolm, C. New J. Chem. 2003, 27, 609. (c)
Adam, W.; Beck, A. K.; Pichota, A.; Saha-M o¨ ller, C. R.; Seebach, D.;
Vogl, N.; Zhang, R. Tetrahedron: Asymmetry 2003, 14, 1355.
b
of cumene hydroperoxide (CHP) (88%) unless otherwise indicated. Isolated
yield after chromatographic purification. Enantiomeric excess values were
determined by either chiral HPLC or chiral GC, and the detailed information
is provided in the Supporting Information.
c
The absolute configurations of 3c and 3f were determined as
(
3R,4R) and (3R,4S), respectively, by comparison of reported optical
2b,3b,12
rotation.
In summary, we have designed a new chiral bishy-
droxamic acid ligand, which has been shown to be excellent for
the vanadium-catalyzed asymmetric epoxidation and kinetic resolu-
tion of homoallylic alcohols. Further studies focusing on broader
application of our chiral vanadium-hydroxamic acid complexes
to wider scope are ongoing.
(
10) (a) Enantiomeric excess values were determined by chiral GC analysis,
and the detailed information is provided in Supporting Information. The
absolute configurations of 4a and 4b were determined as (R) and (R),
respectively, by comparison of retention times (GC analysis) of the
absolute configuration known compounds (9a, 9b), which were prepared
by the following reported sequence: Ehrlich, G.; Kalesse, M. Synlett 2005,
4, 655. Detailed information is provided in Supporting information. (b)
For the stereoselective epoxidation of homoallylic alcohols, see: Mihelich,
E. D.; Daniels, K.; Eickhoff, D. J. J. Am. Chem. Soc. 1981, 103, 7690.
Acknowledgment. Support for this research was provided by
the SORST project of the Japan Science and Technology Agency
(JST), National Institutes of Health (NIH) GM068433-01, Merck
(11) Kende, A. S.; Toder, B. H. J. Org. Chem. 1982, 47, 167.
Research Laboratories, and a starter grant from the University of
Chicago.
(
12) To explain these enantioselectivities, as well as those of kinetic resolutions,
we proposed a possible model of the asymmetric epoxidation of homoal-
lylic alcohol catalyzed by the complex of vanadium and ligand 1d, which
is provided in the Supporting Information.
Supporting Information Available: Representative experimental
procedures and spectral data for 1c and 1d. This material is available
free of charge via the Internet at http://pubs.acs.org.
JA067495Y
J. AM. CHEM. SOC.
9
VOL. 129, NO. 2, 2007 287