560
L. C. Dias et al. / Tetrahedron Letters 49 (2008) 557–561
354; (c) Nimkar, S.; Menaldino, D.; Merrill, A. H.; Liotta,
D. Tetrahedron Lett. 1997, 38, 7687.
4. Menaldino, D. S.; Bushnev, A.; Sun, A.-M.; Liotta, D. C.;
Symolon, H.; Desai, K.; Dillehay, D. L.; Peng, Q.; Wang,
E.; Allegood, J.; Trotman-Pruett, S.; Sullards, M. C.;
Merrill, A. H. Pharmacol. Res. 2003, 47, 373.
5. (a) Wiseman, J. M.; McDonald, F. E.; Liotta, D. C. Org.
Lett. 2005, 7, 3155; (b) Dougherty, A. M.; McDonald, F.
E.; Liotta, D. C.; Moody, S. J.; Pallas, D. C.; Pack, C. D.;
Merrill, A. H., Jr. Org. Lett. 2006, 8, 649.
OH
i. OsO4(cat.)
Et2O/H2O (1:1), 2 h
OH
O
R
R
C13H27
C13H27
ii. then NaIO4, 18 h
NHBoc
NHBoc
16a-d and 16g
18a, R = Me, 92%
18b, R = i-Pr, 80%
18c, R = i-Bu, 94%
18d, R = Bn, 89%
18g, R = CH2OBn, 92%
Scheme 7. Synthesis of 4-N-Boc-amino-3-hydroxy ketones.
6. Symolon, H.; Schmelz, E. M.; Dillehay, D. L.; Merrill, A.
H., Jr. J. Nutr. 2004, 134, 1157.
Treatment of homoallylic alcohols 16a–d and 16g with
OsO4/NaIO4 gave 4-N-Boc-amino-3-hydroxy ketones
18a–d and 18g in good yields (Scheme 7).
7. (a) Dias, L. C.; Ferreira, E. Tetrahedron Lett. 2001, 42,
7159; (b) Dias, L. C.; Ferreira, A. A.; Diaz, G. Synlett
2002, 1845; (c) Dias, L. C.; Diaz, G.; Ferreira, A. A.;
Meira, P. R. R.; Ferreira, E. Synthesis 2003, 4, 603; (d)
Dias, L. C.; Santos, D. R.; Steil, L. J. Tetrahedron Lett.
2003, 44, 6861; (e) Dias, L. C.; Ferreira, A. A.; Santos, D.
R.; Ferreira, E.; Diaz, G.; Steil, L. J.; Meira, P. R. R.;
Giacomini, R. Arkivoc 2003, 10, 240.
Again, to the best of our knowledge, this is the
best methodology available for the preparation of
these kinds of compounds with high levels of
diastereoselectivities.19,21
8. Dias, L. C.; Meira, P. R. R.; Ferreira, E. Org. Lett. 1999,
1, 1335.
9. (a) Righi, G.; Ciambrone, S. Tetrahedron Lett. 2004, 45,
2103; (b) Lou, S.; Westbrook, J. A.; Schaus, S. E. J. Am.
Chem. Soc. 2004, 126, 11440; (c) Machado, M. A.; Harris,
M. I. N. C.; Braga, A. C. H. J. Braz. Chem. Soc. 2006, 17,
1440; (d) Zhang, Z.-W.; Hu, J.-Y. J. Braz. Chem. Soc.
2006, 17, 1447; (e) Jung, C.-K.; Krische, M. J. J. Am.
Chem. Soc. 2006, 128, 17051; (f) Gennari, C.; Pain, G.;
Moresca, D. J. Org. Chem. 1995, 60, 6248.
10. (a) Bunnelle, W. H.; Narayanan, B. A. Tetrahedron Lett.
1987, 28, 6261; (b) Mickelson, T. J.; Koviach, J. L.;
Forsyth, C. J. J. Org. Chem. 1996, 61, 9617.
11. (a) Einhorn, J.; Einhorn, C.; Luche, J. L. Synlett 1991, 37;
(b) Prasad, J. V. N. V.; Rich, D. H. Tetrahedron Lett.
1990, 31, 1803.
12. (a) Fehrentz, J. A.; Castro, B. Synthesis 1983, 676; (b)
Golebiowski, A.; Jacobsson, U.; Jurczak, J. Tetrahedron
1987, 43, 3063; (c) Jurczak, J.; Golebiowski, A. Chem. Rev.
1989, 89, 149; (d) Stanfield, C. F.; Parker, J. E.; Kanellis,
P. J. Org. Chem. 1981, 46, 4797; (e) Prasad, J. N. V. N.;
Rich, D. H. Tetrahedron Lett. 1991, 32, 5857; (f) Zanatta,
N.; Squizani, A. M. C.; Fantinel, L.; Nachtigall, F. M.;
Borchhardt, D. M.; Bonacorso, H. G.; Martins, M. A. P.
J. Braz. Chem. Soc. 2005, 16, 1255; (g) Braibante, M. E.
F.; Braibante, H. T. S.; Morel, A. F.; Costa, C. C.; Lima,
M. G. J. Braz. Chem. Soc. 2006, 17, 184.
3. Conclusions
We have described here that high levels of substrate-
based, 1,2-syn-stereocontrol could be achieved in the
achiral allyltrichlorostannane addition reactions to
N-Boc-a-amino aldehydes, leading to the anti-Felkin
products, which were easily converted to the corre-
sponding 4-N-Boc-amino-3-hydroxy ketones in good
yields. This methodology stands as a new and very effi-
cient approach to 4-N-Boc-amino-3-hydroxy ketones.
This synthetic methodology allows compounds with
programmed variations of substituents to be synthesized
and is particularly important in the screening of
pharmacological activity and in the study of structure-
activity relationships directed toward the design of
new classes of anticancer principles. Further studies in
this direction are underway to explore their generality
and origin and will be described in a full account of this
work together with our results related to the reductions
of these 4-N-Boc-amino-3-hydroxy ketones to the corre-
sponding 1,3-syn and 1,3-anti diols.21
13. The optical purity of aldehydes 10 was estimated to be
1
greater than 96% ee from the H NMR spectrum of the
Acknowledgments
Mosher ester prepared from 10 via NaBH4 reduction
followed by esterification.
We are grateful to FAEP-UNICAMP, FAPESP (Fun-
´
14. (a) Cherest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett.
`
dac¸ao de Amparo a Pesquisa do Estado de Sao Paulo)
˜
˜
1968, 18, 2199; (b) Anh, N. T.; Eisenstein, O. Nouv. J.
Chem. 1977, 1, 61; (c) We use the ‘Felkin’ descriptor to
refer to the diastereomer predicted by the Felkin–Ahn
paradigm. The ‘anti-Felkin’ descriptor refers to diastereo-
mers not predicted by this transition state model.
15. (a) The ratios were determined by 1H and 13C NMR
spectroscopic analysis of the unpurified product mixture;
(b) All of the percentage values represent data obtained
from at least three individual trials.
and CNPq (Conselho Nacional de Desenvolvimento
´
´
Cientıfico e Tecnologico) for financial support. We also
thank Professor Carol H. Collins for helpful suggestions
about English grammar and style.
References and notes
16. Masui, Y.; Chino, N.; Sakakibara, S. Bull. Chem. Soc.
Jpn. 1980, 63, 464.
17. Futagawa, S.; Inui, T.; Shiba, T. Bull. Chem. Soc. Jpn.
1973, 46, 3308.
18. Having confirmed the 1,2-syn relationship, the absolute
stereochemistry of the newly formed hydroxyl substituent
was determined by ascertaining its relationship to the
known stereocenter originating from the aldehydes.
1. Biochemistry, 2nd ed.; Voet, D., Voet, J. G., Eds.; Wiley:
New York, 1995.
2. (a) Hannun, Y. A.; Loomis, C. R.; Merrill, A. H., Jr.; Bell,
R. M. J. Biol. Chem. 1986, 261, 12604; (b) Merrill, A. H.,
Jr.; Sereni, A. M.; Stevens, V. L.; Hannun, Y. A.; Bell, R.
M., ; Kinkade, J. M., Jr. J. Biol. Chem. 1986, 261, 12610.
3. (a) Garner, P.; Park, J. M.; Malecki, E. J. Org. Chem.
1988, 53, 11061; (b) Herold, P. Helv. Chim. Acta 1988, 71,