Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
addition. The resulting enolate radical abstracts a proton from
CHCl3 to form the primary radical RAD-6a and Cl3Cy. The
primary radical RAD-6a rearranges to a more stable tertiary
Conflicts of interest
There are no conflicts to declare.
DOI: 10.1039/C8CC05924A
radial RAD-6b that recombines with Cl3C (formed from Cl3Cy
through electron transfer to TX•+ regenerating TX) to form
7.
Notes and references
One aspect that we are not able to rationalize is the solvent
isotope effect dependent chemoselectivity. Isotope dependent
chemoselectivity is known in literature due to delicate balance
of competing reaction rates,28 a similar phenomenon can be
envisioned in our system (cyclization vs H-abstraction). Efforts
are underway in our lab to further understand this
observation.
1. B. E. Rossiter and N. M. Swingle, Chem. Rev., 1992, 92, 771-
806.
2. M. P. Sibi and S. Manyem, Tetrahedron, 2000, 56, 8033-8061.
3. S. R. Harutyunyan, T. den Hartog, K. Geurts, A. J. Minnaard
and B. L. Feringa, Chem. Rev., 2008, 108, 2824-2852.
4. E. P. Farney, S. S. Feng, F. Schäfers and S. E. Reisman, J. Am.
Chem. Soc., 2018, 140, 1267-1270.
5. A. Gualandi, E. Matteucci, F. Monti, A. Baschieri, N. Armaroli,
L. Sambri and P. G. Cozzi, Chem. Sci., 2017, 8, 1613-1620.
Scheme 5: Excited state conjugate addition of thiophenol to 1.
6. A. T. Herrmann, L. L. Smith and A. Zakarian, J. Am. Chem.
Soc., 2012, 134, 6976-6979.
7. H. Huo, C. Wang, K. Harms and E. Meggers, J. Am. Chem.
Soc., 2015, 137, 9551-9554.
8. M. Saito, M. Nakajima and S. Hashimoto, Tetrahedron, 2000,
56, 9589-9594.
9. G. L. Khatik, R. Kumar and A. K. Chakraborti, Org. Lett., 2006,
8
, 2433-2436.
10. N. K. Rana, S. Selvakumar and V. K. Singh, J. Org. Chem.,
2010, 75, 2089-2091.
11. N. Fu, L. Zhang, S. Luo and J.-P. Cheng, Org. Lett., 2014, 16
4626-4629.
,
12. N. Vallavoju, S. Selvakumar, S. Jockusch, M. P. Sibi and J.
Sivaguru, Angew. Chem. Int. Ed., 2014, 53, 5604-5608.
13. E. Kumarasamy, R. Raghunathan, S. Jockusch, A. Ugrinov and
J. Sivaguru, J. Am. Chem. Soc., 2014, 136, 8729-8737.
14. N. Vallavoju, S. Selvakumar, B. C. Pemberton, S. Jockusch, M.
P. Sibi and J. Sivaguru, Angew. Chem. Int. Ed., 2016, 55, 5446
–5451.
15. E. Kumarasamy, A. J.-L. Ayitou, N. Vallavoju, R. Raghunathan,
A. Iyer, A. Clay, S. K. Kandappa and J. Sivaguru, Acc. Chem.
Res., 2016, 49, 2713-2724.
To showcase the generality of our strategy, we employed
conjugate addition involving thiols to N-N substituted
acrylanilides. As shown in the Scheme 5, direct irradiation
(
l»300 nm) of 1 in 1:1 v/v of thiophenol/chloroform gave the
expected 1,4 addition product 10 in 50-93% isolated yields.
The thiol addition photoproduct was unambiguously identified
by single crystal XRD (for 10f). Control studies in the absence
of light did not result in the conjugate addition product. While
light initiated conjugate addition of thiols to hydrazide can be
rationalized based on our proposed mechanism (Scheme 4-
left), we cannot rule out the formation of ground state/excited
state complex with thiols under our direct irradiation
conditions. Further investigations are underway in our lab to
showcase the utility of our findings and to understand the
mechanism.
16. A. Iyer, S. Jockusch and J. Sivaguru, Chem. Commun., 2017,
53, 1692--1695.
17. E. Kumarasamy, R. Raghunathan, S. K. Kandappa, A.
Sreenithya, S. Jockusch, R. B. Sunoj and J. Sivaguru, J. Am.
Chem. Soc., 2017, 139, 655-662.
18. E. Kumarasamy, S. K. Kandappa, R. Raghunathan, S. Jockusch
and J. Sivaguru, Angew. Chem. Int. Ed., 2017, 56, 7056-7061.
19. Y. Tian and Z.-Q. Liu, RSC Advn., 2014, 4, 64855-64859.
20. M.-Z. Lu and T.-P. Loh, Org. Lett., 2014, 16, 4698-4701.
21. M. Zhu and W. Fu, Heterocyc. Comm., 2015, 21, 387–390.
22. Refer to supporting information.
23. Q. Q. Zhu, W. Schnabel and P. Jacques, J. Chem. Soc., Faraday
Trans., 1991, 87, 1531-1535.
24. D. Rehm and A. Weller, Isreal J. Chem., 1970, 8, 259-271.
25. A. Iyer, S. Jockusch and J. Sivaguru, J. Phys. Chem. A., 2014,
118, 10596-10602.
26. G. J. Kavarnos and N. J. Turro, Chem. Rev., 1986, 86, 401-449.
27. N. J. Turro, V. Ramamurthy and J. C. Scaiano, Modern
Molecular Photochemistry of Organic Molecules, University
Science Books, Sausalito, CA, 2010.
28. R. M. Gleixner, K. M. Joly, M. Tremayne, B. M. Kariuki, L.
Male, D. M. Coe and L. R. Cox, Chem. Eur. J., 2010, 16, 5769-
5777.
29. M. D. Kärkäs, J. A. Porco and C. R. J. Stephenson, Chem. Rev.,
2016, 116, 9683-9747.
Conclusions
Our study has shown that the photochemistry of hydrazides
offers new avenues to uncover photoreactivity due to their
unique excited state properties. In the present case,
acrylanilides that typically undergo
6p-photocyclization
underwent conjugate addition (chloromethylation and thiol
addition) from the excited state. The prospect of altering and
uncovering new excited state reactivity will create new
opportunities to develop novel and catalytic light initiated
reactions.29-32 Efforts along these lines are currently underway
in our laboratory.
30. V. Ramamurthy and J. Sivaguru, Chem. Rev., 2016, 116, 9914-
9993.
31. D. M. Schultz and T. P. Yoon, Science, 2014, 343
.
32. M. Kozlowski and T. Yoon, J. Org. Chem., 2016, 81, 6895-
6897.
PAGE 2
Please do not adjust margins