Paper
Journal of Materials Chemistry A
the fresh one. The acid exchange capacity of PS–SO3H/2.5PMA– 10 C. Tagusagawa, A. Takagaki, S. Hayashi and K. Domen, J. Am.
C8–SiO2 HNs aer 10 cycles is 1.8 mmol gꢀ1, only slightly lower
Chem. Soc., 2008, 130, 7230.
in comparison with the fresh one (1.9 mmol gꢀ1). The above 11 J. B. Joo, A. Vu, Q. Zhang, M. Dahl, M. Gu, F. Zaera and
results suggest that PS–SO3H/2.5PMA–C8–SiO2 HNs with octyl Y. Yin, ChemSusChem, 2013, 6, 2001.
group modication are much more stable than PS–SO3H/ 12 G. D. Yadav and J. J. Nair, Microporous Mesoporous Mater.,
2.5PMA–SiO2 HNs without octyl modication, suggesting that 1999, 33, 1.
the octyl group could efficiently prevent the leaching of active 13 Y. Xu, W. Gu and D. Gin, J. Am. Chem. Soc., 2004, 126, 1616.
sites during the catalytic process. We hypothesize that the 14 M. A. Harmer, W. E. Farneth and Q. Sun, J. Am. Chem. Soc.,
hydrophobic carbon chain may tangle with the sulfonated PS
1996, 118, 7708.
polymer chain to increase its stability during the catalytic 15 P. R. Siril, H. E. Cross and D. R. Brown, J. Mol. Catal. A:
process.
Chem., 2008, 279, 63.
16 M. A. Harmer and Q. Sun, Appl. Catal., A, 2001, 221, 45.
17 M. Hart, G. Fuller and D. R. Brown, J. Mol. Catal. A: Chem.,
2002, 182, 439.
Conclusions
18 P. Barbaro and F. Liguori, Chem. Rev., 2009, 109, 515.
19 C. T. Kresge and W. J. Roth, Chem. Soc. Rev., 2013, 42, 3663.
20 S. Shylesh, P. P. Samuel, S. Sisodiya and A. P. Singh, Catal.
Surv. Asia, 2008, 12, 266.
21 F. Hoffmann, M. Cornelius, J. Morell and M. Froeba, Angew.
Chem., Int. Ed., 2006, 45, 3216.
22 A. Sayari and S. Hamoudi, Chem. Mater., 2001, 13, 3151.
23 L. Zhang, Q. Yang, W. Zhang, Y. Li, J. Yang, D. Jiang, G. Zhu
and C. Li, J. Mater. Chem., 2005, 15, 2562.
24 Y. Yang, J. Liu, X. Li, X. Liu and Q. Yang, Chem. Mater., 2011,
23, 3676.
25 Y. Yang, X. Liu, X. Li, J. Zhao, S. Bai, J. Liu and Q. Yang,
Angew. Chem., Int. Ed., 2012, 51, 9164.
26 X. Li, X. Liu, Y. Ma, M. Li, J. Zhao, H. Xin, L. Zhang, Y. Yang,
C. Li and Q. Yang, Adv. Mater., 2012, 24, 1424.
27 J. Liu, Q. Yang, L. Zhang, H. Yang, J. Gao and C. Li, Chem.
Mater., 2008, 20, 4268.
28 W. Long and C. W. Jones, ACS Catal., 2011, 1, 674.
29 D. Margolese, J. A. Melero, S. C. Christiansen, B. F. Chmelka
and G. D. Stucky, Chem. Mater., 2000, 12, 2448.
30 J. A. Melero, G. D. Stucky, R. van Grieken and G. Morales,
J. Mater. Chem., 2002, 12, 1664.
In summary, we have demonstrated an efficient strategy for the
synthesis of hybrid hollow nanospheres with a high content of
sulfonic groups uniformly distributed in mesoporous silica
channels. The hybrid HNs have a BET surface area from 115 to
331 m2 gꢀ1, and pore size from 2.5 nm to 6.4 nm, depending on
the polymer content incorporated in the silica shell. The hybrid
HNs could be used as efficient solid acid catalysts for acid-
catalyzed liquid reactions, such as esterication of lauric acid
with ethanol. The studies show that the incorporation of PMA
and surface modication by octyl groups could increase the
surface hydrophobicity, which causes an increase in the cata-
lytic activity. Under similar conditions, the hybrid HNs, with
optimized surface properties and sulfonic acid content, show
comparable activity to concentrated sulfuric acid. The incor-
porated octyl group could prevent the leaching of PS–SO3H
during the catalytic process, thus, the hybrid HNs could be
recycled in a stable manner. Our results provide a new approach
for the synthesis of solid acid catalysts by efficiently combining
PS–SO3H and silica and a hollow nanostructure together.
Acknowledgements
31 T. Okayasu, K. Saito, H. Nishide and M. T. W. Hearn, Green
Chem., 2010, 12, 1981.
32 A. Martin, G. Morales, F. Martinez, R. van Grieken, L. Cao
and M. Kruk, J. Mater. Chem., 2010, 20, 8026.
33 M. Choi, F. Kleitz, D. N. Liu, H. Y. Lee, W. S. Ahn and R. Ryoo,
J. Am. Chem. Soc., 2005, 127, 1924.
This work was nancially supported by the National Natural
Science Foundation of China (no. 21325313, 21232008).
Notes and references
1 A. Corma, Chem. Rev., 1995, 95, 559.
2 J. H. Clark, Acc. Chem. Res., 2002, 35, 791.
3 G. Busca, Chem. Rev., 2007, 107, 5366.
4 F. Liu, X. Meng, Y. Zhang, L. Ren, F. Nawaz and F. Xiao,
J. Catal., 2010, 271, 52.
5 F. Liu, W. Kong, C. Qi, L. Zhu and F. Xiao, ACS Catal., 2012, 2,
565.
6 R. Xing, N. Liu, Y. Liu, H. Wu, Y. Jiang, L. Chen, M. He and
P. Wu, Adv. Funct. Mater., 2007, 17, 2455.
7 P. A. Zapata, J. Faria, M. P. Ruiz, R. E. Jento and
D. E. Resasco, J. Am. Chem. Soc., 2012, 134, 8570.
8 F. Bauer, W. H. Chen, E. Biiz, A. Freyer, V. Sauerland and
S. Liu, J. Catal., 2007, 251, 258.
34 R. E. Mishler, II, A. V. Biradar, C. T. Duncan, E. A. Schiff and
T. Asefa, Chem. Commun., 2009, 6201.
35 H. Chen, R. Liu, M. Lo, S. Chang, L. Tsai, Y. Peng and J. Lee,
J. Phys. Chem. C, 2008, 112, 7522.
36 J. Gao, J. Liu, S. Bai, P. Wang, H. Zhong, Q. Yang and C. Li,
J. Mater. Chem., 2009, 19, 8580.
37 J. Y. Kim, J. C. Park, H. Kang, H. Song and K. H. Park, Chem.
Commun., 2010, 46, 439.
38 P. Wang, S. Bai, J. Zhao, P. Su, Q. Yang and C. Li,
ChemSusChem, 2012, 5, 2390.
39 Z. Feng, Y. Li, D. Niu, L. Li, W. Zhao, H. Chen, L. Li, J. Gao,
M. Ruan and J. Shi, Chem. Commun., 2008, 2629.
40 J. Dou and H. C. Zeng, J. Am. Chem. Soc., 2012, 134, 16235.
9 M. Tamura, W. Chaikittisilp, T. Yokoi and T. Okubo, 41 L. Zhang, S. Wu, C. Li and Q. Yang, Chem. Commun., 2012,
Microporous Mesoporous Mater., 2008, 112, 202.
48, 4190.
This journal is © The Royal Society of Chemistry 2014
J. Mater. Chem. A, 2014, 2, 7546–7554 | 7553