R. Maggi et al. / Applied Catalysis A: General 411–412 (2012) 146–152
151
electronwithdrawing and electronreleasing groups. It is interesting
to note that very good selectivities are obtained with hydroquinone,
methylhydroquinone and chlorohydroquinone (Table 3, entries 1, 2
and 4); on the contrary, when the reaction is performed with hydro-
quinones bearing strong electronreleasing groups (entries 5 and 6),
a drop in both yield and selectivity is observed, due to high reac-
tivity of the starting materials that is responsible of the formation
of overoxidation products.
[4] S. Patai (Ed.), The Chemistry of Quinonoid Compounds, Part 2, Wiley, New York,
1988.
[5] B.M. Trost, I. Fleming (Eds.), Comprehensive Organic Chemistry, vol. 7, Perga-
mon, Oxford, 1979.
[6] S. Itoh, M. Ogino, S. Haranou, T. Terasaka, T. Ando, M. Komatsu, Y. Ohshiro, S.
Fukuzumi, K. Kano, K. Takagi, T. Ideka, J. Am. Chem. Soc. 117 (1995) 1485–1493.
[7] F.B. Vliet, Org. Synth. Coll. I (1956) 482.
[8] S. Kajigaeshi, Y. Morikawa, S. Fujisaka, T. Kakinami, K. Nishihira, Bull. Chem.
Soc. Jpn. 64 (1991) 336–338.
[9] F. Minisci, A. Citterio, E. Vismara, F. Fontana, S.D. Bernardis, J. Org. Chem. 54
(1989) 728–731.
Concerning a possible comment on the mechanism of the
in situ formation of the peroxysulfonic acid as a powerful oxidizing
reagent [36–38]. In both cases the reaction proceeds through the
formation of intermediates 4a and 5a [56] that produce the final
methyl-1,4-benzoquinone (Scheme 2). It is important to under-
line that a possible radical mechanism contribution [57] cannot
be totally excluded as, by carrying out the reaction in the presence
of stoichiometric amount of BHT (butylhydroxytoluene), a com-
mon radical inhibitor, variations in term of yield and activity were
observed (reaction carried out in the absence of BHT: 79% yield, 92%
selectivity; reaction carried out in the presence of BHT: 52% yield,
90% selectivity).
[10] D.V. Pratt, F. Ruan, P.B. Hopkins, J. Org. Chem. 52 (1987) 5053–5055.
[11] V. Singh, V. Sapehiyia, G.L. Kad, Synthesis (2003) 198–201.
[12] R.S. Varma, R. Dahiya, R.K. Saini, Tetrahedron Lett. 38 (1977) 7029–7032.
[13] D.H.R. Barton, J.P. Finet, M. Thomas, Tetrahedron 44 (1988) 6397–6407, and
references cited therein.
[14] S.-I. Murahashi, T. Naota, N. Miyaguchi, S. Noda, J. Am. Chem. Soc. 118 (1996)
2509–2510.
[15] H. Sun, X. Li, J. Sundermeyer, J. Mol. Catal. A: Chem. 240 (2005) 119–122.
[16] T. Yakura, T. Konishi, Synlett (2007) 765–768.
[17] H. Miyamura, M. Shiramizu, R. Matsubara, S. Kobayashi, Angew. Chem. Int. Ed.
47 (2008) 8093–8095.
[18] M.M. Hashemi, Z. Karimi-Jaberi, B. Eftekhari-Sis, J. Chem. Res. (S) 3 (2005)
160–161.
[19] R. Bernini, E. Mincione, M. Barantini, G. Fabrizi, M. Pasqualetti, S. Tempesta,
Tetrahedron 62 (2006) 7733–7737.
[20] M. Oelgemöller, N. Healy, L. de Oliveira, C. Jung, J. Mattay, Green Chem. 8 (2006)
831–834.
[21] I. Owsik, B. Kolarz, J. Mol. Catal. A 178 (2002) 63–71.
[22] O.V. Zolomaeva, O.A. Kholdeeva, A.B. Sorokin, Green Chem. 8 (2006) 883–
886.
[23] H. Miyamura, M. Shiramizer, R. Matsubara, S. Kobayashi, Angew. Chem. Int. Ed.
47 (2008) 8093–8095.
[24] F. Derikvand, F. Bigi, R. Maggi, C.G. Piscopo, G. Sartori, J. Catal. 271 (2010)
99–103.
4. Conclusions
[25] C.W. Lee, S.H. Jin, K.S. Yoon, H.M. Jeong, K.W. Chi, Tetrahedron Lett. 50 (2009)
559–561.
[26] I. Brehm, S. Hinneschiedt, H. Meier, Eur. J. Org. Chem. (2002) 3162–3170.
[27] P.I. Dalko (Ed.), Enantioselective Organocatalysis, Wiley, Weinheim, 2007.
[28] W.D. Bossaert, D.E. De Vos, W.M. Van Rhijn, J. Bullen, P.J. Grobet, P.A. Jacobs, J.
Catal. 182 (1999) 156–164.
[29] K. Tanabe, W.F. Hölderich, Appl. Catal. A: Gen. 181 (1999) 399–434.
[30] M.A. Harmer, Q. Sun, Appl. Catal. A: Gen. 221 (2001) 45–62.
[31] K. Wilson, A.F. Lee1, D.J. Macquarrie, J.H. Clark, Appl. Catal. A: Gen. 228 (2002)
127–133.
In conclusion we have found that sulfonic acids, tethered onto
silica, represent good and reusable heterogeneous catalysts for the
oxidation of hydroquinones to the corresponding quinones with
30% aqueous hydrogen peroxide under environmentally friendly
conditions. Although this is a well-known oxidation reaction, the
most important advantage of this protocol is that the use of metal
catalysts is avoided.
[32] I.K. Mbaraka, D.R. Radu, V. Lin, B.H. Shanks, J. Catal. 219 (2003) 329–336.
[33] J.A. Melero, R. van Grieken, G. Morales, Chem. Rev. 106 (2006) 3790–3812.
[34] I.K. Mbaraka, B.H. Shanks, J. Catal. 244 (2006) 78–85.
[35] J. Fischer, W.F. Hölderich, Appl. Catal. A: Gen. 180 (1999) 435–443.
[36] Y. Usui, K. Sato, M. Tanaka, Angew. Chem. Int. Ed. 42 (2003) 5623–5626.
[37] M.C.A. van Vliet, I.W.C.E. Arends, R.A. Sheldon, Synlett (2001) 248–250.
[38] J. Wahlen, D.E. De Vos, P.A. Jacobs, Org. Lett. 5 (2003) 1777–1780.
[39] A. Barbarini, R. Maggi, M. Muratori, G. Sartori, Tetrahedron: Asymmetry 15
(2004) 2467–2473.
Acknowledgments
The authors acknowledge the support of the Ministero
dell’Università e della Ricerca (MIUR), Italy, and the University of
Parma (National Project “Attivazione ossidativa catalitica e foto-
catalitica per la sintesi organica”). The Centro Interdipartimentale
Misure (CIM) is acknowledged for the use of NMR instruments.
[40] L. Soldi, W. Ferstl, S. Loebbecke, R. Maggi, C. Malmassari, G. Sartori, S. Yada, J.
Catal. 258 (2008) 289–295.
[41] C.G. Piscopo, S. Loebbecke, R. Maggi, G. Sartori, Adv. Synth. Catal. 352 (2010)
1625–1629.
[42] A. Corma, H. Garcia, Adv. Synth. Catal. 348 (2006) 1391–1412.
[43] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-
W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.W. Higgins, J.L. Schlenker,
J. Am. Chem. Soc. 114 (1992) 10834–10843.
[44] S. Leveneur, D.Y. Murzin, T. Salmi, J. Mol. Catal. A: Chem. 303 (2009) 148–155.
[45] T. Sakamoto, H. Yonehara, C. Pac, J. Org. Chem. 62 (1997) 3194–3199.
[46] E. Bosch, R. Rathore, J.K. Kochi, J. Org. Chem. 59 (1994) 2529–2536.
[47] D. Deffieux, I. Fabre, A. Titz, J.-M. Léger, S. Quideau, J. Org. Chem. 69 (2004)
8731–8738.
References
[1] O.A. Kholdeeva, I.D. Ivanchikova, M. Guidotti, C. Pirovano, N. Ravasio, M.V. Bar-
matova, Y.A. Chesalov, Adv. Synth. Catal. 351 (2009) 1877–1889, and references
therein cited.
[2] S. chudel, H. Mayer, O. Isler, in: W.H. Sebrell, R.S. Harris (Eds.), The Vitamins,
vol. 5, Academic Press, New York, 1972, p. 165.
[3] B.H. Lipshutz, P. Mollard, S.S. Pfeiffer, W. Chrisman, J. Am. Chem. Soc. 124 (2002)
14282–14283.