´
MARTIRE ET AL.
494
Studies on the effect of Fenton reactions on the
degradation of aromatic substrates show two times
faster decay rates for 4-nitrophenol than for 2-
nitrophenol [7]. The latter observation, the favorable
formation of quinone and hydroxylated products in
Fenton reactions [4,21–23], and the electrophilic char-
acter of Fenton intermediates towards phenolic rings
[24] are in agreement with the observed behavior for
Kinetics Database Version 3.0. Notre Dame Radiation
Laboratory: Notre Dame, IN, and National Institute of
Standards and Technology: Gaithersburg, M.D., 1998
and references cited therein.
13. Gonzalez, M. C.; Braun, A. M. Res Chem Intermed
1995, 21, 837.
14. Ma´rtire, D. O.; Gonzalez, M. C. Int J Chem Kinet 1997,
29, 589.
15. (a) Benkelberg, H. J.; Warneck, P. J Phys Chem 1995, 99,
5214; (b) Zuo, Y. G. Geochim Cosmochim Acta 1995,
59, 3123; (c) Sedlak, D. L.; Hoigne´, J. Atmos Environ
1993, 27A, 2173.
16. Land, E. J. J Chem Soc, Faraday Trans 1993, 89, 803.
17. (a) Isaacs, N. S. Reaction Intermediates in Organic
Chemistry; Wiley: London, 1974; (b) Schuchmann, M.
N.; Bothe, E.; von Sonntag, J.; von Sonntag, C. J Chem
Soc, Perkin Trans 2 1998, 791.
FeO2+
.
Degradation of p-nitrophenol by Fenton reagents
([H2O2] = 5 mM, [Fe2+
]
0.18 mM) was reported
to fit to a phenol pseudo-first-order decay with a rate
constant of
9
10 4 s 1 [25]. Taking our value of k14
= 1.2 104 M 1 s 1 and assuming a low FeO2+ steady
7
concentration of 10 M in the reported experiments
[25,26], the estimated pseudo-first-order decay rate of
p-nitrophenol due to its reaction with FeO2+ is 1.2
10 3 s 1. Consequently, despitethemoderatereactivity
shown by FeO2+ ions, their reactions with the organic
substrates are not expected to be the rate-limiting step
in Fenton reactions if oxoiron(IV) were the reactive
intermediate involved.
18. Ma´rtire, D. O.; Gonzalez, M. C. Prog React Kin Mech
2001, 26, 201.
19. Howard, J. A.; Scaiano, J. C. In Rate and Equilibrium
Constants for Reactions of Polyatomic Free Radicals,
Biradicals and Radical Ions in Liquids; Fischer, H. (Ed.)
(New Series II/19); Landolt-Bo¨rnstein: Berlin, 1991;
Ch. 8, p. 142.
20. Fleet, G. W. In Organic Reaction Mechanisms; Knipe,
A. C.; Watts, W. E., Eds.; Wiley: New York, 1990;
Ch. 5, pp. 188–193.
BIBLIOGRAPHY
1. Behra, P.; Sigg, L. Nature 1990, 344, 419.
2. Jacob, D. J. J Geophys Res 1986, 91, 9807.
3. Løgager, T.; Holcman, J.; Sehested, K.; Pedersen, T.
Inorg Chem 1992, 31, 3523.
21. Spacek, W.; Bauer, R.; Heisler, G. Chemosphere 1995,
30, 477.
22. Sedlak, D. L.; Andren, A. W. Environ Sci Technol 1991,
25, 777–782.
4. Ya Sychev, A.; Isak, V. G. Russian Chem Rev 1995, 64,
1105 and references therein.
23. Kouachi, N.; Sehili, T. Toxicol Environ Chem 1999, 68,
141.
5. Koppenol, W. H. Redox Rep 2001, 6, 229–234.
6. Jacobsen, F.; Holcman, J.; Sehested, K. Int J Chem Kinet
1998, 30, 215–222.
24. Ito, S.; Suzuki, M.; Kobashashi, T.; Itoh, H.; Harada, A.;
Ohba, S.; Nishida, Y. J Chem Soc, Dalton Trans 1996,
12, 2579–2580.
7. Kiwi, J.; Pulgarin, C.; Peringer, P. Applied Catalysis B:
Environmental 1994, 3, 335–350.
25. Ma, Y. S.; Huang, S. T.; Lin, J. G. Water Sci Technol
2000, 42, 1155–1160.
8. Viera, M. R. PhD thesis, National University of La Plata,
1998.
26. Kremer, M. L. Phys Chem Chem Phys 1999, 1, 3595–
3605.
9. Hart, E. J.; Sehested, K.; Holcman, J. J Anal Chem 1983,
55, 46.
10. Sehested, K.; Corfitzen, H.; Holcman, J.; Hart, E. J.
J Phys Chem A 1998, 102, 2667.
11. Alegre, M. L.; Gerone´s, M.; Rosso, J. A.; Bertolotti,
S. G.; Braun, A. M.; Ma´rtire, D. O.; Gonzalez, M. C. J
Phys Chem A 2000, 104, 3117.
12. Ross, A. B.; Mallard, W. G.; Helman, W. P.; Buxton,
G. V.; Huie, R. E.; Neta, P. NDRL-NIST Solution
27. CRC Handbook of Chemistry and Physics, 76th
ed.; Lide, D. R., Ed.; CRC Press: Boca Raton,
1995.
28. March, J. Advanced Organic Chemistry: Reactions,
Mechanisms and Structure, 4th ed.; Wiley: London,
1992; p. 280.
29. Segura, P. J Org Chem 1985, 50, 1045.
30. Lien, E. J.; Ren, S.; Bui, H.-H.; Wang, R. Free Rad Biol
Med 1999, 26, 285.