Communications
[4] A. K. Uriarte, M. A. Rodkin, M. J. Gross, A. S. Kharitonov, G. I.
Panov, Stud. Surf. Sci. Catal. 1997, 110, 857.
may indicate that the formation of H2O2 from CO, O2, and
H2O is unlikely in the present hydroxylation reaction. In
addition, the reaction using 16O2 and H218O gave an 8:2
mixture of Ph16OH and Ph18OH as shown above. If H2O2 is
formed in this reaction, H16O18OH would be generated from
16O2 and H218O, and as a consequence an approximate 1:1
mixture of Ph16OH and Ph18OH would be obtained. There-
fore, the in situ generation of H2O2 is thought to be unlikely in
the present hydroxylation reaction.
On the basis of these results, it can be concluded that O2 is
activated on the partially reduced H7PMo8V4O40ꢀx and that
the activated oxygen reacts with 1 to eventually form 2. In
addition, since the reaction is not promoted by H3PMo12O40,
which lacks the V ion, it seems likely that O2 is activated on
[5] a) C. Walling, J. Am. Chem. Soc. 1975, 97, 363; b) C. Walling,
Acc. Chem. Res. 1975, 8, 125; c) J. R. L. Smith, R. O. C. Norman,
J. Am. Chem. Soc. 1963, 85, 2897; d) N. A. Milas, J. Am. Chem.
Soc. 1937, 59, 2342; e) H. Mimoun, L. Saussine, E. Daire, M.
Postel, J. Fischer, R. Weiss, J. Am. Chem. Soc. 1983, 105, 3101;
f) K. Nomiya, H. Yanagibayashi, C. Nozaki, K. Kondoh, E.
Hiramatsu, Y. Shimizu, J. Mol. Catal. A 1996, 114, 181; g) L. W.
Lee, W. J. Lee, Y. K. Park, S. E. Park, Catal. Today 2000, 61, 137;
h) M. Stockmann, F. Konietzni, J. U. Notheis, J. Voss, W. F.
Maier, Appl. Catal. A 2001, 208, 343.
[6] a) N. Herron, C. A. Tolman, J. Am. Chem. Soc. 1987, 109, 200;
b) T. Kitano, Y. Kuroda, M. Mori, S. Ito, K. Sasaki, M. Nitta, J.
Chem. Soc. Perkin Trans. 2 1993, 981.
[7] S. Niwa, M. Eswaramoorthy, J. Nair, A. Raj, N. Itoh, H. Shoji, T.
Namba, F. Mizukami, Science 2002, 295, 105.
the V species in H7PMo8V4O40ꢀx
.
[8] a) T. Jintoku, H. Taniguchi, Y. Fujiwara, Chem. Lett. 1987, 1865;
b) T. Jintoku, K. Takaki, Y. Fujiwara, Y. Fuchita, K. Hiraki, Bull.
Chem. Soc. Jpn. 1990, 63, 438; c) T. Tsunami, M. Nakamura, H.
Tominaga, J. Chem. Soc. Chem. Commun. 1992, 1446; d) W.
Laufer, J. P. M. Niederer, W. F. Hoelderich, Adv. Synth. Catal.
2002, 344, 1084.
[9] a) T. Kitano, T. Nakai, M. Nitta, M. Mori, S. Ito, K. Sasaki, Bull.
Chem. Soc. Jpn. 1994, 67, 2850; b) T. Miyake, M. Hamada, Y.
Sasaki, M. Oguri, Appl. Catal. A 1995, 131, 33; c) T. Miyake, M.
Hamada, H. Niwa, M. Nishizuka, M. Oguri, J. Mol. Catal. A
2002, 178, 199; d) I. Yamanaka, T. Nabeta, S. Takenaka, K.
Otsuka, Stud. Surf. Sci. Catal. 2000, 130, 815; e) T. Fukushi, W.
Ueda, Y. Moro-oka, T. Ikawa, Ind. Eng. Chem. Res. 1989, 28,
1587; f) R. Hamada, Y. Shibata, S. Nishiyama, S. Tsuruya, Phys.
Chem. Chem. Phys. 2003, 5, 956; g) H. Yamanaka, R. Hamada,
H. Nibuta, S. Nishiyama, S. Tsuruya, J. Mol. Catal. A 2002, 178,
89; h) I. Yamanaka, S. Katagiri, S. Takenaka, K. Otsuka, Stud.
Surf. Sci. Catal. 2002, 130, 809.
[10] a) K. Nomiya, K. Yagishita, Y. Nemoto, T. Kamataki, J. Mol.
Catal. A 1997, 126, 43; b) L. C. Passoni, A. T. Cruz, R. Buffon, U.
Schuchardt, J. Mol. Catal. A 1997, 120, 117; c) Y. J. Seo, Y.
Mukai, T. Tagawa, S. Goto, J. Mol. Catal. A 1997, 120, 149.
[11] T. Yokota, M. Tani, S. Sakaguchi, Y. Ishii, J. Am. Chem. Soc.
2003, 125, 1476.
[12] a) G. A. Tsigdinos, C. J. Hallada, Inorg. Chem. 1968, 7, 437; b) L.
Pettersson, I. Anderesson, A. Selling, J. H. Grate, Inorg. Chem.
1994, 33, 982; c) V. F. Odyakov, E. G. Zhizhina, R. I. Maksimov-
skaya, K. I. Matveev, Kinet. Catal. 1995, 36, 733; d) K. Nomiya,
K. Yagishita, Y. Nemoto, T. Kamataki, J. Mol. Catal. A 1997, 126,
43; e) M. Vennat, P. Herson, J.-M. Brꢀgeault, G. B. Shulꢁpin, Eur.
J. Inorg. Chem. 2003, 908.
In conclusion, we have developed a simple, direct
synthetic method of producing phenol (2) from benzene (1)
with air in the presence of CO by using molybdovanadophos-
phoric acids as catalysts. This method may provide a promis-
ing alternative route to 2 from 1 in place of the cumene
process, which needs three reaction steps.
Experimental Section
Oxidation of benzene: in a typical procedure, the reaction was carried
out in a teflon autoclave. Benzene (2 mmol) was added to a solution
of H7PMo8V4O40·24H2O (26.5 mmol) and AcONa (0.1 mmol) in
AcOH (13.5 mL) and water (1.5 mL). The mixture was stirred at
908C for 15 h under air (15 atm) and CO (5 atm). After the reaction,
GC and GC–MS analyses were performed. The conversions and
yields of products were estimated from the peak areas, based on the
GC internal standard technique.
Recovery of the catalyst: After the reaction, H2O (5 mL) was
added to the mixture, followed by extraction with iPr2O (40 mL). The
aqueous layer was washed with iPr2O (40 mL), and the combined
aqueous extracts were concentrated by evaporation under reduced
pressure. The green solid obtained was dried in vacuo to give the
recovered catalyst. The 31P NMR spectra of the fresh and recovered
catalysts were similar.
Received: December 1, 2004
Published online: March 22, 2005
Keywords: hydrocarbons · hydroxylation · oxidation · oxygen ·
.
[13] For example, the Pd-catalyzed synthesis of phenol from benzene
under CO (5 atm) and O2 (65 atm) in H2O/MeCOCH2CHMe2 at
708C gave phenol in 3.2% yield based on benzene used: R.
Tassiniari, D. Bianchi, R. Ungarelli, E. Battistel, R. DꢁAloisio
(Enichem S.P.A.), EP894783, 1999 [Chem. Abstr. 1999, 130,
155248].
synthetic methods
[1] a) R. A. Sheldon, J. K. Kochi, Metal-Catalyzed Oxidations of
Organic Compounds, Academic, New York, 1981; b) W. Jordan,
H. Barneveld, O. van Gerlich, M. Kleine-Boymann, J. Ullrich in
Ullmannꢀs Encyclopedia of Industrial Chemistry, Vol. A19, VCH,
Weinheim, 1991, p. 307.
[2] H. Hock, S. Lang, Ber. Desch. Chem. Ges. 1944, B77, 257.
[3] a) M. Iwamoto, J. Hirata, K. Matsukami, S. Kagawa, J. Phys.
Chem. 1983, 87, 903; b) E. Suzuki, K. Nakashiro, Y. Ono, Chem.
Lett. 1988, 953; c) R. Burch, C. Howitt, Appl. Catal. A 1992, 86,
139; d) R. Burch, C. Howitt, Appl. Catal. A 1993, 103, 135;
e) G. I. Panov, A. S. Kharitonov, V. I. Sobolev, Appl. Catal. A
1992, 82, 31; f) G. I. Panov, A. S. Kharitonov, V. I. Sobolev, Appl.
Catal. A 1993, 98, 33; g) G. I. Panov, A. S. Kharitonov, V. I.
Sobolev, Appl. Catal. A 1996, 141, 185; h) B. Liptakova, M.
Hronec, Z. Cvengrosova, Catal. Today 2000, 61, 143.
[14] Evolution of about 0.9 kg of CO2 is estimated to accompany the
production of 1 m3 of H2 from CH4.
[15] a) D. Bianchi, R. Bortolo, R. DꢁAloisio, M. Ricci, Angew. Chem.
1999, 111, 734; Angew. Chem. Int. Ed. 1999, 38, 706; b) D.
Bianchi, R. Bortolo, R. DꢁAloisio, M. Ricci, S. Soattini (Enichem
S.P.A.), EP808796, 1997 [Chem. Abstr. 1997, 128, 50358]; c) R.
Vignola, E. Battistel, D. Bianchi, R. Bortolo, R. Tassinari
(Enichem S.P.A.), EP861688, 1998 [Chem. Abstr. 1998, 129,
218223].
2588
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 2586 –2588