1
784 Inorganic Chemistry, Vol. 50, No. 5, 2011
Chowdhury et al.
General Procedure for Catalytic Epoxidation Study. In a
Tomasi and co-workers; specifically, the conductor like PCM
(CPCM) in conjugation with the united atom topological model
(using UAO radii, implemented in Gaussian 03) was applied.
typical reaction, the catalyst (0.025 mmol) in 3 mL of solvent
EtOHor tert-amyl alcohol or CH Cl or CH CN) was placed in a
5 mL Schlenktube andstirredfor 10 min at 298 K. The respective
26-28
(
2
2
2
3
29
GaussSum was used to calculate the fractional contributions of
various groups to each molecular orbital. No symmetry con-
straints were imposed during structural optimizations, and the
nature of the optimized structures and energy minima were defined
by subsequent frequency calculations. Natural bond orbital anal-
yses were performed using the NBO 3.1 module of Gaussian 03
olefins (0.5 mmol) and dodecane (GC internal standard) werethen
added into the catalyst solution under stirring conditions. The
oxidant (3 equiv of 30% H O or 1.5 equiv of TBHP or 1.2 equiv
2
2
of 50% m-CPBA in 3 mL of respective solvents) was added over a
period of 8 h through a syringe pump. The percent yield and
percent conversion were determined using the GC technique using
30
on optimized geometry. A31ll of the calculated structures were
visualized with ChemCraft.
Synthesis of Isomeric Complexes [Ru(trpy)(L)Cl] (1 and 2). A
1
respective standard product samples or using H NMR.
Crystallography. Single crystals of 1 and 1a/2 were grown by
slow evaporations of their dichloromethane and 1:1 acetonitrile-
toluene solutions, respectively. X-ray data were collected using an
OXFORD XCALIBUR-S CCD single-crystal X-ray diffrac-
tometer. The structures were solved and refined using full matrix
3
total of 100 mg (0.23 mmol) of Ru(trpy)Cl , 55 mg (0.32 mmol) of
quinaldic acid, and NEt (1.2 mL, 1.0 mmol) were taken in 15 mL
3
of ethanol. The mixture was heated to reflux for 6 h under a
dinitrogen atmosphere. The initial browncolor gradually changed
toviolet, andthe solvent of the reactionmixture was evaporatedto
drynessunder reduced pressure. The violet solid thus obtained was
2
19
least-squares techniques on F using the SHELX-97 program.
The absorption corrections were done using multiscan (SHELXTL
program package), and all data were corrected for Lorentz
polarization effects. Hydrogen atoms were included in the
refinement process as per the riding model. Selected crystal-
lographic parameters are given in Table 1. The hydrogen atoms
associated with the crystallized water and disordered acetoni-
trile molecules in 1a could not be located. The asymmetric unit
of 1a contains two crystallographically independent molecules.
Computational Details. Full geometry optimizations were
dissolved in a minimum volume of CH
neutral alumina column. The blue-violet solution corresponding
to isomer 1 was eluted first with CH Cl -CH OH (20:1) followed
by the red-violet solution of the isomer 2 with a CH Cl -CH OH
2 2
Cl and purified by using a
2
2
3
2
2
3
(10:1) mixture. On removal of the solvent under reduced pressure,
the pure isomeric complexes 1 and 2 were obtained in the solid
state.
Complex 1: Yield, 43 mg (35%). Anal. Calcd for C25
ClO Ru (M.W. 542.01). Found: C, 55.35 (55.15); H, 3.16
(3.08); N, 10.33 (10.42%). λ [nm] (ε[M cm ]) in acetonitrile:
559 (8477), 417 (7330), 324 (29 859), 312 (27 489), 278 (26 117),
17
H -
2
0,21
carried out at the (R)B3LYP and (U)B3LYP levels
and 2 and for 3 , 4 , and 5, respectively, using the density
for 1
N
4
2
þ
þ
-1
-1
22
functional theory method with Gaussian 03 (revision C.02).
All elements except ruthenium were assigned the 6-31G(d) basis
set. The LanL2DZ basis set with the effective core potential was
Vertical electronic excita-
tions based on B3LYP optimized geometries were computed for
267 (sh), 239 (68 065). ESI-MS (m/z): 543.85 (1), 507.03 (1-Cl).
1
H NMR in (CD ) SO [δ/ppm(J/Hz)]: 10.2 (d, 8.8, 1H), 8.7 (d,
3 2
23,24
employed for the ruthenium atom.
8.4, 1H), 8.6 (m, 4H), 8.3 (t, 5.5, 5.1, 1H), 8.1 (d, 8.4, 1H), 7.9 (m,
7H), 7.4 (m, 2H).
25
the time-dependent density functional theory (TD-DFT) formalism
in acetonitrile using the polarizable continuum model (PCM) of
Complex 2: Yield, 37 mg (30%). Anal. Calcd for C25
ClO Ru (M.W. 542.01). Found: C, 55.35 (55.27); H, 3.16
3.10); N, 10.33 (10.58%). λ [nm] (ε[M cm ]) in acetonitrile:
H -
17
N
(
4
2
-1
-1
5
2
33 (14 710), 378 (11 407), 318 (52 359), 310 (sh), 278 (42 199),
39 (111 575). ESI-MS (m/z): 543.91 (2), 507.01 (2-Cl).
(
18) (a) Sullivan, B. P.; Calvert, J. M.; Meyer, T. J. Inorg. Chem. 1980, 19,
404. (b) Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. Purification of
Laboratory Chemicals, 2nd ed.; Pergamon: New York, 1980.
19) Sheldrick, G. M. SHELX-97; University of G €o ttingen: G €o ttingen,
1
H
1
3 2
NMR in (CD )
2H), 8.35 (m, 2H), 8.27 (d, 8.1, 1H), 8.16 (d, 8.4, 1H), 7.93 (m,
4H), 7.81 (d, 7.5, 1H), 7.55 (m, 2H), 7.36 (t, 7.5, 7.8, 1H), 7.13 (t,
SO [δ/ppm (J/Hz)]: 8.73 (d, 8.1, 1H), 8.6 (m,
(
Germany, 1997.
(
(
(
20) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
21) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1998, 37, 785.
22) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
7
.5, 7.5, 1H), 6.44 (d, 8.8,1H).
Synthesis of Isomeric [Ru(trpy)(L)(H O)]ClO (1 ) and (2 ).
0
0
2
4
0
0
Aqua complexes, 1 and 2 , were prepared by adopting the
literature reported procedure starting from 50 mg of precursor
chloro complexes 1 and 2, respectively.
0
M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T., Jr.; Kudin, K. N.;
Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji,
H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels,
A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;
Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,
P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson,
B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision
C.02; Gaussian, Inc.: Wallingford, CT, 2004.
9
Complex 1 : Yield, 60 mg (52%). Anal. Calcd for C H N -
19
2
5
4
ClO
7
Ru (M.W. 624.10). Found: C, 48.08 (47.91); H, 3.07 (3.00);
-1
2
-1
N, 8.98 (8.85%). Molar conductivity [Λ
dichloromethane = 110. λ [nm] (ε[M cm ]) in dichloro-
methane: 497 (3910), 371 (sh), 314 (13 350), 275 (15 110), 241
M
-1
(Ω cm M )] in
-1
0
(
(
37 480). ESI-MS (m/z): 525.03 (1 -ClO
0
4
; calcd 525.05), 507.01
CO [δ/ppm(J/
1
O; calcd 507.04). H NMR in (CD
1 -ClO
4
-H
2
3
)
2
Hz)]: 9.52 (d, 9.9, 1H), 8.85 (d, 10.4, 1H), 8.39 (m, 2H), 8.2 (m,
3H), 8.06 (t, 8.4, 8.6, 2H), 7.98 (t, 8.5, 8.6, 2H), 7.8 (m, 3H), 7.58
(m, 3H)
Complex 2 : Yield, 65 mg (57%). Anal. Calcd for
C H N ClO Ru (M.W. 624.10). Found: C, 48.08(47.99); H,
0
2
5
19
4
7
(
23) Dunning, T. H., Jr.; Hay, P. J. In Modern Theoretical Chemistry;
-1
2
3
M
.07(2.95); N, 8.98(9.16%). Molar Conductivity [Λ
M
(Ω cm
Schaefer, H. F., III, Ed.; Plenum: New York, 1976; p 1.
(
(
-
1
-1
-1
)] in dichloromethane = 100. λ[nm] (ε[M cm ]) in di-
24) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
25) (a) Bauernschmitt, R.; Ahlrichs, R. Chem. Phys. Lett. 1996, 256, 454.
chloromethane: 477 (4480), 374 (sh), 315 (15 330), 274 (15 380),
(
8
b) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109,
218. (c) Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem.
Phys. 1998, 108, 4439.
(30) (a) Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F.
NBO, version 3.1; Theoretical Chemistry Institute, University of Wisconsin:
Madison, WI, 2001. (b) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1985, 83, 1736.
(c) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899. (d)
Weinhold, F. In Encyclopedia of Computational Chemistry; Schleyer, P. v. R.,
Ed.; Wiley: New York, 1998; p 1792.
(
26) Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117.
27) Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett.
(
1
996, 255, 327.
(
(
28) Barone, V.; Cossi, M. J. Chem. Phys. A 1998, 102, 1995.
29) (a) O’Boyle, N. M. GaussSum 2.1, 2007. Available at http://gausssum.
sf.net (accessed Jan 2011). (b) O'Boyle, N. M.; Tenderholt, A. L.; Langner, K. M.
J. Comput. Chem. 2008, 29, 839.
(31) Zhurko, D. A.; Zhurko, G. A. ChemCraft 1.5; Plimus: San Diego, CA.