ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
INDQ/NO, a Bioreductively Activated Nitric
Oxide Prodrug
000–000
†
Kavita Sharma, Aishwarya Iyer, Kundan Sengupta, and Harinath Chakrapani*
‡
‡
,†
Departments of Chemistry and Biology, Indian Institute of Science Education and
Research Pune, Pune 411 008, Maharashtra, India
Received March 31, 2013
ABSTRACT
The design, synthesis, and development of INDQ/NO, a novel nitric oxide (NO) prodrug targeted by a bioreductive trigger, are described. INDQ/NO,
an indolequinone-diazeniumdiolate is found to be metabolized to produce NO by DT-diaphorase, a bioreductive enzyme that is overexpressed in certain
cancers and hypoxic tumors. Cell-based assays revealed that INDQ/NO induces DNA damage and is a potent inhibitor of cancer cell proliferation.
Numerous studies demonstrate the efficacy of nitric
1
oxide (NO) as a potent tumoristatic agent. However,
are highly suited for site-directed delivery of therapeutic
3
NO. These NO donors can be derivatized into stable
due to its multifarious biological effects, controlled and
localized generation of therapeutic NO using prodrugs is
2
necessary. Among various available methods for generation
of NO under physiological conditions, diazeniumdiolates
protected forms; activation of these prodrugs by a suit-
able metabolic trigger, typically an enzyme that is over-
expressed in certain tissues, produces NO in a localized
manner.
NAD(P)H:quinone oxidoreductase (DT-diaphorase;
DT-D) has received considerable attention for prodrug
development, as this enzyme is overexpressed in numerous
cancers as compared with the paired normal tissue as well
as hypoxic (low oxygen tension) regions of solid tumors.
Although prodrug methodologies for numerous cytotoxic
5
species are known, a candidate for DT-diaphorase-activated
†
Department of Chemistry.
‡
Department of Biology.
1) (a) Shami, P. J.; Saavedra, J. E.; Wang, L. Y.; Bonifant, C. L.;
(
Diwan, B. A.; Singh, S. V.; Gu, Y.; Fox, S. D.; Buzard, G. S.; Citro,
M. L.; Waterhouse, D. J.; Davies, K. M.; Ji, X.; Keefer, L. K. Mol.
Cancer Ther. 2003, 2, 409. (b) Saavedra, J. E.; Srinivasan, A.; Buzard,
G. S.; Davies, K. M.; Waterhouse, D. J.; Inami, K.; Wilde, T. C.; Citro,
M. L.; Cuellar, M.; Deschamps, J. R.; Parrish, D.; Shami, P. J.; Findlay,
V. J.; Townsend, D. M.; Tew, K. D.; Singh, S.; Jia, L.; Ji, X.; Keefer,
L. K. J. Med. Chem. 2006, 49, 1157. (c) Saavedra, J. E.; Shami, P. J.;
Wang, L. Y.; Davies, K. M.; Booth, M. N.; Citro, M. L.; Keefer, L. K.
J. Med. Chem. 2000, 43, 261. (d) Maciag, A. E.; Chakrapani, H.;
Saavedra, J. E.; Morris, N. L.; Holland, R. J.; Kosak, K. M.; Shami,
P. J.; Anderson, L. M.; Keefer, L. K. J. Pharmacol. Exper. Therap. 2011,
4
(3) (a) Keefer, L. K. ACS Chem. Biol. 2011, 6, 1147. (b) Keefer, L. K.
Annu. Rev. Pharmacol. Toxicol. 2003, 43, 585. (c) Hrabie, J. A.; Keefer,
L. K. Chem. Rev. 2002, 102, 1135. (d) Wang, P. G.; Xian, M.; Tang, X.;
Wu, X.; Wen, Z.; Cai, T.; Janczuk, A. J. Chem. Rev. 2002, 102, 1091. (e)
King, S. B. Free Radical Biol. Med. 2004, 37, 735.
3
36, 313–320. (e) Maciag, A. E.; Nandurdikar, R. S.; Hong, S. Y.;
(4) (a) Danson, S.; Ward, T. H.; Butler, J.; Ranson, M. Cancer Treat.
Rev. 2004, 30, 437. (b) Tedeschi, G.; Chen, S.; Massey, V. J. Biol. Chem.
1995, 270, 1198. (c) Mikami, K.; Naito, M.; Tomida, A.; Yamada, M.;
Sirakusa, T.; Tsuruo, T. Cancer Res. 1996, 56, 2823. (d) Siegel, D.;
Gibson, N. W.; Preusch, P. C.; Ross, D. Cancer Res. 1990, 50, 7483. (e)
Brown, J. M.; Wilson, W. R. Nat. Rev. Cancer 2004, 4, 437.
(5) (a) Hernick, M.; Flader, C.; Borch, R. F. J. Med. Chem. 2002, 45,
3540. (b) Swann, E.; Barraja, P.; Oberlander, A. M.; Gardipee, W. T.;
Hudnott, A. R.; Beall, H. D.; Moody, C. J. J. Med. Chem. 2001, 44, 3311.
(c) Hernick, M.; Borch, R. F. J. Med. Chem. 2002, 46, 148. (d) Ahn,
G. O.; Botting, K. J.; Patterson, A. V.; Ware, D. C.; Tercel, M.; Wilson,
W. R. Biochem. Pharmacol. 2006, 71, 1683. (f) Huang, B.; Desai, A.;
Tang, S.; Thomas, T. P.; Baker, J. R. Org. Lett. 2010, 12, 1384. (g)
Hernick, M.; Flader, C.; Borch, R. F. J. Med. Chem. 2002, 45, 3540.
Chakrapani, H.; Morris, N. L.; Diwan, B.; Shami, P. J.; Shiao, Y.-H.;
Anderson, L. M.; Keefer, L. K.; Saavedra, J. E. J. Med. Chem. 2011, 54,
7751–7758. (f) Kiziltepe, T.; Hideshima, T.; Ishitsuka, K.; Ocio, E. M.;
Raje, N.; Catley, L.; Li, C.-Q.; Trudel, L. J.; Yasui, H.; Vallet, S.; Kutok,
J. L.; Chauhan, D.; Mitsiades, C. S.; Saavedra, J. E.; Wogan, G. N.;
Keefer, L. K.; Shami, P. J.; Anderson, K. C. Blood 2007, 110, 709. (g)
Saavedra, J. E.; Billiar, T. R.; Williams, D. L.; Kim, Y. M.; Watkins,
S. C.; Keefer, L. K. J. Med. Chem. 1997, 40, 1947. (h) Gong, P.;
Cederbaum, A. I.; Nieto, N. Mol. Pharmacol. 2004, 65, 130.
(2) (a) Hirst, D.; Robson, T. J. Pharm. Pharmacol. 2007, 59, 3. (b)
Barraud, N.; Kardak, B. G.; Yepuri, N. R.; Howlin, R. P.; Webb, J. S.;
Faust, S. N.; Kjelleberg, S.; Rice, S. A.; Kelso, M. J. Angew. Chem., Int.
Ed. 2012, 51, 9057.
1
0.1021/ol400884v r XXXX American Chemical Society