110
M. Sasidharan, A. Bhaumik / Journal of Molecular Catalysis A: Chemical 338 (2011) 105–110
Table 4
Effect of substrate to H2O2 molar ratio over TS-1.a
Entry
Substrate/H2O2 mole ratio
Conversion (mol%)
H2O2 conversion, %
Product selectivities (%)
␥-Butyrolactone
␣-Hydroxy tetrahydrofuran
Others
1
2
3
4
5
4
3.3
2
1
0.5
10.9
14.6
27.3
49.1
61.5
59.0
68.5
81.0
99.0
96.0
88.0
91.5
90.6
91.0
82.5
8.1
5.4
4.5
3.6
5.5
2.8
3.6
4.9
5.4
12.0
a
Reaction conditions: 10 mmol tetrahydrofuran, 20 wt% of catalyst (TS-1, Si/Ti = 42.1) with respect to the substrate, temperature 343 K, reaction time 12 h.
tetrahydrofurans, whereas tetra-␣, ␣, ␣ꢀ, ␣ꢀ-substituted compound
exhibited no activity due to lack of ␣ C–H bond. Dihydropyran con-
taining olefinic functions produced a large amount of side products
via epoxidation of –C C– bond in addition to ␣ C–H oxidation of
ether. The distribution of products with reaction time and H2O2
concentration revealed ␣-hydroxy ethers are the initial reaction
product, which is transformed to lactone as the final product.
The oxidation of both symmetrical and unsymmetrical open-chain
ethers produced carboxylic acids as the major product through
oxidative cleavage. Further, TS-1 showed excellent recycling effi-
ciency than the other microporous titanosilicates.
References
[1] M. Taramasso, G. Perego, B. Notari, U.S. Patent 4,410,501, 1983.
[2] J.S. Reddy, R. Kumar, P. Ratnasamy, Appl. Catal. 58 (1990) L1.
[3] A. Tuel, Y.B. Taarit, Zeolites 15 (1995) 164.
[4] T. Blasco, M.A. Camblor, A. Corma, P. Esteve, J.M. Guil, A. Martinez, J.A. Perdigon-
Melon, S. Valencia, J. Phys. Chem. B 102 (1998) 75.
[5] W. Peng, T. Tatsumi, T. Komatsu, T. Yashima, Chem. Lett. (2000) 774.
[6] W. Fan, Y. Kubota, T. Tatsumi, ChemSusChem 1 (2008) 175–178.
[7] P.T. Tenev, M. Chibwe, T.J. Pinnavaia, Nature 368 (1994) 321–324.
[8] D. Chandra, S.C. Laha, A. Bhaumik, Appl. Catal. A: Gen. 342 (2008) 29–34.
[9] A. Bhaumik, S. Samanta, N.K. Mal, Micropor. Mesopor. Mater. 68 (2004) 29–35.
[10] M. Sasidharan, A. Bhaumik, J. Mol. Catal. A: Chem. 328 (2010) 60–67.
[11] S.L. Jain, B.S. Rana, B. Singh, A.K. Sinha, A. Bhaumik, M. Nandi, B. Sain, Green
Chem. 12 (2010) 374–377.
[12] R.A. Sheldon, R.S. Downing, Appl. Catal. A: Gen. 189 (1999) 163.
[13] P. Muller, in: S. Patai (Ed.), The Chemistry of Ethers, Crown Ethers, Hydroxyl
Groups and Their Sulphur Analogues, Wiley, New York, 1980, Suppl. E, p. 469.
[14] S.M. Kupchan, M.A. Eakin, A.M. Thomas, J. Med. Chem. 14 (1971) 1147.
[15] M. Kaname, S. Yoshifuji, H. Sashida, Heterocycles 79 (2009) 647–658.
[16] P.H.J. Carlsen, T. Katsuki, V.S. Martin, K.B. Sharpless, J. Org. Chem. 46 (1981)
3936.
Scheme 2. Proposed mechanistic pathways for the oxidation of ethers over
titanosilicate/H2O2 system.
[17] J. Muzart, J. Mol. Catal. A: Chem. 319 (2010) 1–29.
[18] R.A. Sheldon, J. Dakka, Catal. Today 19 (1994) 215.
oxidation reactions catalyzed by titanium silicates, it is highly likely
that, the oxidation of ethers to lactones would also be facilitated by
titanium-hydroperoxo complexes formed by the interaction of TiIV
species with H2O2 [33]. Furthermore, since titanium-hydroperoxo
complexes being mild Brönsted acidic, could promote the cleavage
of –O– linkage to produce carboxylic acid in the case of open-chain
ethers. A similar mechanism would be applicable for the oxida-
tion over the other metallosilicates/H2O2 catalytic system under
investigation.
[19] A. Corma, L.T. Nemeth, M. Renz, S. Valencia, Nature 412 (2001) 423.
[20] M. Sasidharan, Y. Kiyozumi, N.K. Mal, M. Paul, P.R. Rajamohanan, A. Bhaumik,
Micropor. Mesopor. Mater. 126 (2009) 234–244.
[21] M. Sasidharan, S. Suresh, A. Sudalai, Tetrahedron Lett. 36 (1995) 9071.
[22] A. Thangaraj, R. Kumar, S.P. Mirajkar, P. Ratnasamy, J. Catal. 130 (1990) 1.
[23] G. Belllussi, M.S. Rigutto, Stud. Surf. Sci. Catal. 85 (1994) 177.
[24] J.S.T. Mambim, H.O. Pastore, C.V. Davanzo, E.J.S. Vichi, O. Nakamura, H. Vargas,
Chem. Mater. 5 (1993) 166.
[25] B. Jayachandran, M. Sasidharan, A. Sudalai, T. Ravindranathan, J. Chem. Soc.
Chem. Commun. (1995) 1523.
[26] J. Reni, M. Sasidharan, A. Sudalai, T. Ravindranathan, J. Chem. Soc. Chem. Com-
mun. (1995) 1341.
[27] N.V. Barhate, M. Sasidharan, A. Sudalai, R.D. Wakharkar, Tetrahedron Lett.
(1996) 707.
4. Conclusions
[28] M. Sasidharan, P. Wu, T. Tatsumi, J. Catal. 205 (2002) 332.
[29] A. Carati, C. Flego, E.P. Massara, R. Millini, L. Carluccio, W.O. Parker Jr., G. Bellussi,
Micropor. Mesopor. Mater. 130 (1999) 137.
[30] L.J. Davis, P. McMorn, D. Bethell, P.C. Bulman Page, F. King, F.E. Hancock, G.J.
Hutchings, J. Catal. 198 (2001) 319.
[31] L.J. Davis, P. McMorn, D. Bethell, P.C. Bulman Page, F. King, F.E. Hancock, G.J.
Hutchings, J. Mol. Catal. A 165 (2001) 243.
[32] G. Bellussi, A. Carati, M.G. Clerici, G. Maddinelli, R. Millini, J. Catal. 133 (1992)
220.
[33] A. Bhaumik, T. Tatsumi, J. Catal. 176 (1998) 305–309.
[34] G.N. Vayssilov, Catal. Rev. Sci. Eng. 39 (1997) 209–251.
[35] S. Mukherjee, M. Nandi, K. Sarkar, A. Bhaumik, J. Mol. Catal. A: Chem. 301 (2009)
114–117.
The titanosilicates can be used as heterogeneous catalyst for
the oxidation of ethers to lactones or carboxylic acids in mod-
erate to good yields in the presence of dilute aqueous H2O2 as
oxidant. The intrinsic activity of medium-pore TS-1 was found to be
higher over the TS-2, Ti-MCM-22, and Ti-. Tetrahydrofuran exhib-
ited the best reactivity than the other cyclic ethers investigated
under the present study. The activity of substituted tetrahydrofu-
rans decreased in the order: mono-␣- > di-␣, ␣ꢀ- > tetra-␣, ␣, ␣ꢀ,
␣ꢀ-substitution. Steric hindrance and geometrical constraints at
reaction sites influence the activity of mono- and di-substituted
[36] J. Iglesias, J.A. Melero, J. Sainz-Pardo, J. Mol. Catal. A: Chem. 291 (2008) 75–84.