Organic Process Research & Development 2005, 9, 472−478
The Preparation of Single Enantiomer 2-Naphthylalanine Derivatives Using
Rhodium-Methyl BoPhoz-catalyzed Asymmetric Hydrogenation
Neil W. Boaz,* Shannon E. Large, James A. Ponasik, Jr., Mary K. Moore, Theresa Barnette, and W. Dell Nottingham
Research Laboratories, Eastman Chemical Company, Kingsport, Tennessee 37662, U.S.A.
Abstract:
variety of pharmaceutically active materials. Of particular
interest are 2-naphthylalanine (2-amino-3-[2-naphthyl]pro-
panoic acid, 1) and especially the N-tert-butoxycarbonyl (N-
Boc) derivative 2. These materials, particularly 2 as it has
advantages for solid-phase peptide synthesis, have found
extensive use in the synthesis of a number of pharmaceuti-
cally useful agents, including luteinizing hormone-releasing
factors,4 somatostatin analogues,5 growth hormone release
stimulators,6 advanced glycated end product (AGE) receptor
modulators,7 and NK1 tachykinin receptor antagonists.8
The single enantiomers of 2-naphthylalanine and N-tert-bu-
toxycarbonyl 2-naphthylalanine were prepared from 2-naph-
thaldehyde. The sequence has been optimized and run on
multikilogram scale, with the key step the asymmetric hydro-
genation of methyl 2-acetamido-3-(2-naphthyl)propenoate using
the rhodium complex of the methyl BoPhoz ligand, which
proceeded smoothly at scale with 97.9% ee. Enhancement to
>99.5% ee was achieved by crystallization of the methyl
2-amino-3-(2-naphthyl)propanoate methanesulfonic acid addi-
tion salt, the product of acidic deacylation of the hydrogenation
product. This protocol for enantiomeric purity enhancement
appears to be general for these types of amino acid derivatives.
Subsequent transformations did not effect the enantiomeric
purity, affording the desired products in >99.5% ee.
There have been a number of preparations of enantio-
merically enriched N-Boc-2-naphthylalanine (as well as the
parent amino acid), utilizing strategies involving enzymatic
resolution,4a-c,9 alkylation of a chiral enolate,10 chiral phase-
transfer alkylation,11 and asymmetric hydrogenation.12 The
Introduction
Asymmetric hydrogenation is an efficient and attractive
approach to single enantiomer materials, largely due to the
ability to transform inexpensive achiral starting materials
such as olefins or ketones into higher-value products with
high enantioselectivity. The area of asymmetric hydrogena-
tion, and in particular the design and synthesis of novel
ligands for these transformations, has been under intense
investigation.1 Although there are a number of materials
available via asymmetric hydrogenation, the preparation of
amino acid derivatives using this technology has long been
of particular interest. Indeed, the first commercial application
of asymmetric hydrogenation was the preparation of L-DOPA
by Knowles and co-workers.2 We have recently reported the
synthesis and utility of a new class of phosphine-amino-
phosphine ligands (BoPhoz ligands) that show exceedingly
high enantioselectivities and activities for the asymmetric
hydrogenation of dehydro-R-amino acid and itaconate de-
rivatives, as well as high enantioselectivities and activities
for the asymmetric hydrogenation of R-ketoesters.3 We chose
to demonstrate the scale-up potential of these ligands for the
preparation of an unnatural amino acid.
(3) (a) Boaz, N. W.; Debenham, S. D.; Mackenzie, E. B.; Large, S. E. Org.
Lett. 2002, 4, 2421-2424. (b) Boaz, N. W.; Debenham, S. D.; Large, S.
E.; Moore, M. K. Tetrahedron: Asymmetry 2003, 14, 3575-3580. (c) Boaz,
N. W.; Mackenzie, E. B.; Debenham, S. D.; Large, S. E.; Ponasik, J. A., Jr.
J. Org. Chem. 2005, 70, 1872-1880.
(4) (a) Nestor, J. J.; Jones, G. H.; Vickery, B. H. U.S. Patent 4,234,571, 1980.
(b) Nestor, J. J.; Jones, G. H.; Vickery, B. H. U.S. Patent 4,341,767, 1982.
(c) Rivier, J. E.; Porter, J.; Rivier, C. L.; Perrin, M.; Corrigan, A.; Hook,
W. A.; Siraganian, R. P.; Vale, W. W. J. Med. Chem. 1986, 29, 1846-
1851. (d) Rasmussen, J. H.; Rasmussen, P. H.; Wachs, W. O.; Hansen, S.;
Fomsgaard, J. PCT Intl. Appl. WO 2003055902, 2003. (e) Janaky, T.;
Juhasz, A.; Bajusz, S.; Schally, A. V. U.S. Patent 6,214,969, 2001. (f) Haviv,
F.; Dwight, W. J.; Nichols, C. J.; Greer, J. PCT Intl. Appl. WO 2000009544,
2000. (g) Kashimoto, K.; Chouno, Y.; Tomisaki, K.; Ohata, A. Jpn. Kokai
Tokkyo Koho JP 10000099, 1998. (h) Fouret, G.; Arnold, Z. S.; Majewski,
T.; Petousis, N. H.; Mahan, K.; Farooqui, F.; Blum, K. J. Peptide Sci. 1995,
1, 89-105. (i) Janecka, A.; Janecki, T.; Shan, S.; Bowers, C.; Folkers, K.
J. Med. Chem. 1994, 37, 2238-2241. (j) Coy, D. H.; Moreau, J. P. U.S.
Patent 5,003,011, 1991. (k) Schally, A. V.; Bajusz, S. Eur. Pat. Appl. EP
299402, 1989. (l) Hocart, S. J.; Nekola, M. V.; Coy, D. H. J. Med. Chem.
1988, 31, 1820-1824.
(5) (a) Rivier, J. E. F.; Reubi, J. C. US Patent 6,579,967, 2003. (b) Bogden, A.
E.; Moreau, J. P. PCT Intl. Appl. WO 9213554, 1992. (c) Coy, D. H.;
Murphy, W. A.; Heiman, M. L. Eur. Pat. Appl. EP 298732, 1989.
(6) (a) Somers, T. C.; Elias, K. A.; Clark, R. G.; Mcdowell, R. S.; Stanley, M.
S.; Burnier, J. P.; Rawson, T. E. U.S. Patent Application Publication
U.S.2002/0111461 A1, 2002. (b) Hansen, T. K.; Paschke, B.; Lau, J.; Lundt,
B. F.; Ankersen, M.; Watson, B.; Madsen, K. US Patent 5,977,178, 1999.
(c) Carpino, P. A.; Dasilva Jardine, P. A.; Lefker, B. A.; Ragan, J. A. PCT
Intl. Appl. WO 9638471, 1996. (d) Somers, T. C.; Elias, K. A.; Clark, R.
G.; Mcdowell, R. S.; Stanley, M. S.; Burnier, J. P.; Rawson, T. E. PCT
Intl. Appl. WO 9615148, 1996.
The continuing interest in unnatural amino acids is driven
by their extensive use as key building blocks for a large
(1) For recent reviews, see: (a) Ohkuma, T.; Kitamura, M.; Noyori, R. In
Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I, Ed.; Wiley-VCH: New
York, 2000; pp 1-110. (b) Brown, J. M. In ComprehensiVe Asymmetric
Catalysis; Jacobsen, E. N., Pfalz, A., Yamamoto, H., Eds.; Springer-
Verlag: Berlin, 1999; Vol. I, pp 121-182. (c) Tang, W.; Zhang, X. Chem.
ReV. 2003, 103, 3029-3069.
(2) (a) Knowles, W. S.; Sabacky, M. J. U.S. Patent 4,124,533, 1978. (b)
Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.;
Weinkauff, D. J. J. Am. Chem. Soc. 1977, 99, 5946-5952 and references
therein.
(7) Mjalli, A. M. M.; Gopalaswamy, R.; Avor, K. S.; Wysong, C. L.; Patron,
A. U.S. Patent Application Publication U.S. 2002/0006957 A1, 2002.
(8) Walpole, D.; Ko, S. Y.; Brown, M.; Beattie, D.; Campbell, E.; Dickenson,
F.; Ewan, S.; Hughes, G. A.; Lemaire, M.; Lerpiniere, J.; Patel, S.; Urban,
L. J. Med. Chem. 1998, 41, 3159.
472
•
Vol. 9, No. 4, 2005 / Organic Process Research & Development
10.1021/op050026g CCC: $30.25 © 2005 American Chemical Society
Published on Web 05/24/2005