residues (Arg 458 and Gly 459) and four nitrogenous bases from DNA, i.e., guanine (G), adenine (A), thymine (T), or cytosine
°
(C), as evidenced by Bax et al. [24]. This surrounded the active site. The grid box volume was then set to 8, 14, and 14 A for
x, y, and z dimensions, respectively, and the grid centers was set to 3.194, 43.143 and 69.977 for x, y, and z center that covered
the 2 amino acid residues and four nitrogenous bases in the considered active pocket. The AutoGrid 4.0 Program was used to
generate the grid maps [25]. The docking algorithm provided with AutoDockVina was used to look for the best docked
conformation between the ligand and protein. During the docking procedure, a maximum of 10 conformers was taken into
consideration for each ligand. AutoDockVina was compiled and run under the Windows 8.0 professional operating system.
LigPlot+ [26] and PyMol [27] were used to deduce the pictorial representation of interaction between ligands and the target
protein.
REFERENCES
1.
2.
3.
4.
5.
6.
7.
8.
9.
F. Borges, F. Roleira, N. Milhazes, L. Santana, and E. Uriarte, Curr. Med. Chem., 12, 887 (2005).
M. A. Al-Haiza and M. S. Mostafa, Molecules, 8, 275 (2003).
K. C. Fylaktakidou and D. H. Litina, J. Curr. Pharm. Des., 10, 3813 (2004).
N. Lall, A. A. Hussein, and J. J. M. Meyer, Fitoterapia, 77, 230 (2006).
I. Kostova, S. Raleva, P. Genova, and R. Argirova, Bioinorg. Chem. Appl., 2006, 1 (2006).
J. W. Hinman, H. Hoeksema, E. L. Caron, and W. G. Jackson, J. Am. Chem. Soc., 78, 1072 (1956).
Shaveta, S. Mishra, and P. Singh, Eur. J. Med. Chem., 124, 500 (2016).
K. Hemalatha and G. Madhumitha, Eur. J. Med. Chem., 123, 596 (2016).
M. N. Joy, Y. D. Bodke, K. K. A. Khader, M. S. A. Padusha, A. M. Sajith, and A. Muralidharan, RSC Adv., 4,
19766 (2014).
10.
11.
A. M. Sajith, K. K. A. Khader, N. Joshi, M. N. Reddy, M. S. A. Padusha, H. P. Nagaswarupa, M. N. Joy, Y. D. Bodke,
R. P. Karuvalam, R. Banerjee, A. Muralidharan, and P. Rajendra, Eur. J. Med. Chem., 89, 21 (2015).
C. Aswathanarayanappa, E. Bheemappa, Y. D. Bodke, P. S. Krishnegowda, S. P. Venkata, and R. Ningegowda,
Arch. Pharm. Chem. Life Sci., 346, 922 (2013).
12.
13.
14.
15.
M. K. Potdar, S. S. Mohile, and M. M. Salunkhe, Tetrahedron Lett., 42, 9285 (2001).
M. A. Parker, D. M. Kurrasch, and D. E. Nichols, Bioorg. Med. Chem., 16, 4661 (2008).
E. Niki, Chem. Phys. Lipids, 44, 227 (1987).
M. J. Matos, F. P. Cruz, S. V. Rodriguez, E. Uriarte, L. Santana, F. Borges, and C. O. Azar, Bioorg. Med. Chem., 21,
3900 (2013).
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
C. Yamagami, M.Akamatsu, N. Motohashi, S. Hamada, and T. Tanahashi, Bioorg. Med. Chem. Lett., 15, 2845 (2005).
B. J. Bradbury and M. J. Pucci, Curr. Opin. Pharmacol., 8, 574 (2008).
Y. C. Tse-Dinh, Infect. Disord. Drug Targets, 7, 3 (2007).
B. A. A. Skaggs, M. Molestely, D. W. Warnock, and C. J. Morrison, J. Clin. Microbiol., 38, 2254 (2000).
D. J. M. Lowry, M. J. Jaqua, and S. T. Selepak, Appl. Microbiol., 20, 46 (1970).
A. Braca, N. D. Tommasi, L. D. Bari, C. Pizza, M. Politi, and I. Morelli, J. Nat. Prod., 64, 892 (2001).
T. Sander, J. Freyss, M. V. Korff, J. R. Reich, and C. Rufener, J. Chem. Inform. Model., 49, 232 (2009).
O. Trott and A. J. Olson, J. Comput. Chem., 31, 455 (2010).
B. D. Bax, P. F. Chan, D. S. Eggleston, A. Fosberry, D. R. Gentry, and F. Gorrec, Nature, 466, 935 (2010).
G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, and R. K. Belew, J. Comput. Chem., 19,
1639 (1998).
26.
27.
R. A. Laskowski and M. B. Swindells, J. Chem. Inform. Model., 51, 2778 (2011).
(accessed October 21, 2014).
620