References
nd
[
[
[
[
[
[
1] D.G. Hall, Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, 2 ed., Wiley-VCH: Weinheim, Germany, 2011.
2] N. Miyaura, A. Suzuki, Chem. Rev. 95 (1995) 2457−2483.
nd
3] A. de Meijere, F. Diederich, Metal-Catalyzed Cross-Coupling Reactions, 2 ed.; Wiley-VCH: Weinheim, 2004.
4] T. Hideshima, P. Richardson, D. Chauhan, et al., Cancer Res. 61 (2001) 3071−3076.
5] A. Paramore, S. Frantz, Nat. Rev. Drug Discovery 2 (2003) 611−612.
6] G.C. Fu, Transition Metal-Catalyzed Hydroboration of Olefins. Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals, 2 ed.;
Wiley-VCH: Weinheim, 2004.
nd
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
7] K. Burgess, M.J. Ohlmeyer, Chem. Rev. 91 (1991) 1179–1191.
8] K. Burgess, W.A. Van der Donk, S.A. Westcott, et al., J. Am. Chem. Soc. 114 (1992) 9350–9359.
9] D.A. Evans, G.C. Fu, A.H. Hoveyda, J. Am. Chem. Soc. 114 (1992) 6671–6679.
10] C.M. Crudden, D. Edwards, Eur. J. Org. Chem. 24 (2003) 4695–4712.
11] A.M. Carroll, T.P. O’Sullivan, P. J. Guiry, Adv. Synth. Catal. 347 (2005) 609–631.
12] E. Khotinsky, M. Melamed, Ber. Dtsch. Chem. Ges. 42 (1909) 3090–3096.
13] E. Krause, R. Nitsche, Ber. Dtsch. Chem. Ges. 54 (1921) 2784–2791.
14] H.C. Brown, T.E. Cole, Organometallics 2 (1983) 1316−1319.
15] C.T. Yang, Z.Q. Zhang, H. Tajuddin, et al., Angew. Chem. Int. Ed. 51 (2012) 528−532.
16] H. Ito, K. Kubota, Org. Lett. 14 (2012) 890−893.
17] J. Yi, J.H. Liu, J. Liang, et al., Adv. Synth. Catal. 354 (2012) 1685−1691.
18] A.S. Dudnik, G.C. Fu, J. Am. Chem. Soc. 134 (2012) 10693−10697.
19] A. Joshi-Pangu, X. Ma, M. Diane, et al., J. Org. Chem. 77 (2012) 6629−6633.
20] S.K. Bose, K. Fucke, L. Liu, P.G. Steel, T.B. Marder, Angew. Chem. Int. Ed. 53 (2014) 1799−1803.
21] T.C. Atack, R.M. Lecker, S.P. Cook, J. Am. Chem. Soc. 136 (2014) 9521−9523.
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
22] R.B. Bedford, P.B. Brenner, E. Carter, et al., Organometallics 33 (2014) 5940–5943.
23] T.C. Atack, S.P. Cook, J. Am. Chem. Soc. 138 (2016) 6139−6142.
24] Y. Cheng, C. Mück‐ Lichtenfeld, A. Studer, Angew. Chem. Int. Ed. 57 (2018) 16832−16836.
25] D. Mazzarella, G. Magagnano, B. Schweitzer-Chaput, P. Melchiorre, ACS Catal. 9 (2019) 5876−5880.
26] L. Zhang, Z.Q. Wu, L. Jiao, Angew. Chem. Int. Ed. 59 (2020) 2095−2099.
27] J. Wu, L. He, A. Noble, V.K. Aggarwal, J. Am. Chem. Soc. 140 (2018) 10700–10704.
28] F. Sandfort, F. Strieth-Kalthoff, F.J.R. Klauck, M.J. James, F. Glorius, Chem. Eur. J. 24 (2018) 17210–17214.
29] J. Hu, G. Wang, S. Li, Z. Shi, Angew. Chem. Int. Ed. 57 (2018) 15227–15231.
30] F.W. Friese, A. Studer, Angew. Chem. Int. Ed. 58 (2019) 9561–9564.
31] J. Wu, R.M. Bar, L. Guo, A. Noble, V.K. Aggarwal, Angew. Chem. Int. Ed. 58 (2019) 18830–18834.
32] Q. Liu, J. Hong, B. Sun, et al., Org. Lett. 21 (2019) 6597–6602.
33] F. W. Friese, A. Studer, Chem. Sci. 10 (2019) 8503–8518.
34] M. Yan, J.C. Lo, J.T. Edwards, P.S. Baran, J. Am. Chem. Soc. 138 (2016) 12692–12714.
35] Y. Li, L. Ge, M.T. Muhammad, H. Bao, Synthesis 49 (2017) 5263–5284.
36] T. Patra, D. Maiti, Chem. Eur. J. 23 (2017) 7382–7401.
37] S. Murarka, Adv. Synth. Catal. 360 (2018) 1735–1753.
38] P. Niu, J. Li, Y. Zhang, C. Huo, Eur. J. Org. Chem. 36 (2020) 5801–5814.
39] W. M. Cheng, R. Shang, ACS Catal. 10 (2020) 9170–9196.
40] S.K. Parida, T. Mandal, S. Das, et al., ACS Catal. 11 (2021) 1640–1683.
41] L. Xu, Eur. J. Org. Chem. 29 (2018) 3884−3890.
42] D. Wei, T.M. Liu, B. Zhou, B. Han, Org. Lett. 22 (2020) 234–238.
43] L. Candish, M. Teders, F. Glorius, J. Am. Chem. Soc. 139 (2017) 7440–7443.
44] W.M. Cheng, R. Shang, B. Zhao, W.L. Xing, Y. Fu, Org. Lett. 19 (2017) 4291–4294.
45] C. Li, J. Wang, L.M. Barton, et al., Science 356 (2017) eaam7355.
46] J. Wang, M. Shang, H. Lundberg, et al., ACS Catal. 8 (2018) 9537−9542.
47] D. Hu, L. Wang, P. Li, Org. Lett. 19 (2017) 2770−2773.
48] A. Fawcett, J. Pradeilles, Y. Wang, et al., Science 357 (2017) 283−286.
49] J.I. Yo-shida, K. Kataoka, R. Horcajada, A. Nagaki, Chem. Rev. 108 (2008) 2265–2299.
50] B.A. Frontana-Uribe, R.D. Little, J.G. Ibanez, A. Palma, R. Vasquez-Medrano, Green Chem. 12 (2010) 2099–2119.
51] R. Francke, R.D. Little, Chem. Soc. Rev. 43 (2014) 2492–2521.
52] S.R. Waldvogel, B. Janza, Angew. Chem. Int. Ed. 53 (2014) 7122–7123.
53] E.J. Horn, B. R. Rosen, P.S. Baran, ACS Cent. Sci. 2 (2016) 302–308.
54] M. Yan, Y. Kawamata, P.S. Baran, Chem. Rev. 117 (2017) 13230–13319.
55] A. Wiebe, T. Gieshoff, S. Möhle, et al., Angew. Chem. Int. Ed. 57 (2018) 5594–5619.
56] D. Pollok, S.R. Waldvogel, Chem. Sci. 11 (2020) 12386–12400.
57] X. Chen, X. Luo, X. Peng, et al., Chem. Eur. J. 26 (2020) 3226−3230.
58] Y. Liu, L. Xue, B. Shi, et al., Chem. Commun. 55 (2019) 14922–14925.
59] F. Lian, K. Xu, W. Meng, et al., Chem. Commun. 55 (2019) 14685–14688.
60] J. Hong, Q. Liu, F. Li, et al., Chin. J. Chem. 37 (2019) 347–351.
61] L.M. Barton, L. Chen, D. Blackmond, P. Baran, Proc. Natl. Acad. Sci. U. S. A. 118 (2021) e2109408118.