Table 2 Asymmetric catalytic allylation of aldehydes catalyzed with
Phebox–RhIII complex 2ca
§ Other substituted allylstannane reagents gave lower yields and enantiose-
lectivities when catalyzed by 2a: allyltrimethylstannane (48%, 35% ee),
allyltriphenylstannane (7%, 27% ee).
Entry Aldehyde
Yield (%) Ee (%)b Configurationc Ref
1 Reviews: R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley,
New York, 1994; B. Bosnich, Asymmetric Catalysis, Martinus Nijhoff,
Dordrecht, The Netherlands, 1986.
2 Reviews: W. R. Roush, in Comprehensive Organic Synthesis, ed. B. M.
Trost, I. Fleming and C. H. Heathcock, Pergamon, Oxford, 1991, vol. 2,
p. 1; Y. Yamamoto and N. Asao, Chem. Rev., 1993, 93, 2207; T. Bach,
Angew. Chem., Int. Ed. Engl., 1994, 33, 417; A. H. Hoveyda and J. P.
Morken, Angew. Chem., Int. Ed. Engl., 1996, 35, 1262.
1
2
3
4
5
6
7
4-BrC6H4CHO
PhCHO
4-MeOC6H4CHO 99
2-MeC6H4CHO
2-furyl-CHO
PhCH2CH2CHO
94
88
43d
61f
80
Se
S
S
Se
Se
R
S
8(a)
3(e)
3(n)
8(a)
8(a)
3(n)
3(e)
98
94
84
53g
58d
63
(E)-PhCHNCHCHO 98
77
3 Allylboranes: (a) H. C. Brown and P. K. Jadhav, J. Am. Chem. Soc.,
1983, 105, 2092; (b) R. P. Short and S. Masamune, J. Am. Chem. Soc.,
1989, 111, 1892; (c) U. S. Racherla and H. C. Brown, J. Org. Chem.,
1991, 56, 401; Allylboronates: (d) T. Herold and R. W. Hoffmann,
Angew. Chem., Int. Ed. Engl., 1978, 17, 768; (e) R. W. Hoffmann and
T. Herold, Chem. Ber., 1981, 114, 375; (f) W. R. Roush, A. E. Walts and
L. K. Hoong, J. Am. Chem. Soc., 1985, 107, 8186; (g) W. R. Roush and
L. Banfi, J. Am. Chem. Soc., 1988, 110, 3979; (h) W. R. Roush, L. K.
Hoong, M. A. J. Palmer and J. C. Park, J. Org. Chem., 1990, 55, 4109;
(i) M. T. Reetz and T. Zierke, Chem. Ind., 1988, 663; Allylbor-
adiazolidines: (j) E. J. Corey, C.-M. Yu and S. S. Kim, J. Am. Chem.
Soc., 1989, 111, 5495; Allyltitanates: (k) M. Riediker and R. O.
Duthaler, Angew. Chem., Int. Ed. Engl., 1989, 28, 494; (l) B. Schmidt
and D. Seebach, Angew. Chem., Int. Ed. Engl., 1991, 30, 99; (m) A.
Hafner, R. O. Duthaler, R. Marti, G. Rihs, P. Rothe-Streit and F.
Schwarzenbach, J. Am. Chem. Soc., 1992, 114, 2321; Allylaluminium
derivatives: (n) N. Minowa and T. Mukaiyama, Bull. Chem. Soc. Jpn.,
1987, 60, 3697; Allylstannans: (o) J. Otera, Y. Kawasaki, H. Mizuno
and Y. Shimizu, Chem. Lett., 1983, 1529; (p) J. Otera, Y. Yoshinaga, T.
Yamaji, T. Yoshioka and Y. Kawasaki, Organometallics, 1985, 4, 1213;
(q) G. P. Boldrini, E. Tagliavini, C. Trombini and A. Umani-Ronchi,
J. Chem. Soc., Chem. Commun., 1986, 685; (r) G. P. Boldrini, L. Lodi,
E. Tagliavini, C. Tarasco, C. Trombini and A. Umani-Ronchi, J. Org.
Chem., 1987, 52, 5447; (s) C. Boga, D. Savoia, E. Tagliavini, C.
Trombini and A. Umani-Ronchi, J. Organomet. Chem., 1988, 353, 177;
Allylchromium complexes: (t) K. Sugimoto, S. Aoyagi and C.
Kibayashi, J. Org. Chem., 1997, 62, 2322.
a All reactions were carried out using 0.5 mmol of aldehyde, 0.75 mmol of
allyltributyltin and 0.025 mmol of chiral catalyst 2c in 2 ml of CH2Cl2 in the
presence of 4 Å molecular sieves (250 mg) at room temperature for 7 h.
b Determined by chiral HPLC analysis using Daicel CHIRALCEL OD-H.
c Assignment by comparison of the sign of optically rotation with reported
d
value. Determined by chiral HPLC analysis using Daicel CHIRALCEL
e
OJ.
By analogy to the other case that is known unambiguously.
f Determined by chiral HPLC analysis using Daicel CHIRALCEL OD.
g Determined by chiral HPLC analysis using Daicel CHIRALPAK AD.
O
O
Cl
N
N
Rh
O
Cl
H
R
si-face
SnBu3
4 K. Furuta, M. Mouri and H. Yamamoto, Synlett, 1991, 561; K. Ishihara,
M. Mouri, Q. Gao, T. Maruyama, K. Furuta and H. Yamamoto, J. Am.
Chem. Soc., 1993, 115, 11490.
Fig. 1
5 J. A. Marshall and Y. Tang, Synlett, 1992, 653; J. A. Marshall and M. R.
Palovich, J. Org. Chem., 1998, 63, 4381.
Table 2 summarizes the results obtained for the allylation
reaction of a variety of aldehydes catalysed with the complex
2c. The characteristic features of the results are as follows: (i) an
electron-donating substituents at the para-position of benzalde-
hyde increases the enantioselectivity; (ii) a methyl group at the
ortho-position of benzaldehyde decreases the selectivity; (iii)
all reactions result in high yields and comparable enantiose-
lectivities with both aromatic and aliphatic aldehydes; (iv) in the
reaction with enals, 1,2-addition reaction occurs exclusively;
(v) in all of the cases, allyltributylstannane attacks to the si-face
of the aldehyde’s CNO plane.
6 S. Aoki, K. Mikami, M. Terada and T. Nakai, Tetrahedron, 1993, 49,
1783; A. L. Costa, M. G. Piazza, E. Tagliavini, C. Trombini and A.
Umani-Ronchi, J. Am. Chem. Soc., 1993, 115, 7001; G. E. Keck and D.
Krishnamurthy, J. Org. Chem., 1993, 58, 6543; G. E. Keck, K. H. Tarbet
and L. S. Geraci, J. Am. Chem. Soc., 1993, 115, 8467; G. E. Keck and
L. S. Geraci, Tetrahedron Lett., 1993, 34, 7827; S. Weigand and R.
Rrückner, Chem. Eur. J., 1996, 2, 1077.
7 D. R. Gauthier, Jr. and E. M. Carreira, Angew. Chem., Int. Ed. Engl.,
1996, 35, 2363.
8 (a) A. Yanagisawa, H. Nakashima, A. Ishiba and H. Yamamoto, J. Am.
Chem. Soc., 1996, 118, 4723; (b) A. Yanagisawa, A. Ishiba, H.
Nakashima and H. Yamamoto, Synlett, 1997, 88.
9 H. Nishiyama and Y. Motoyama, in Lewis Acid Chemistry: A Practical
Approach, ed. H. Yamamoto, OUP, UK, 1998, ch. 13; W. Odenkirk,
A. L. Rheingold and B. Bosnich, J. Am. Chem. Soc., 1992, 114, 6392;
T, K. Hollis, W. Odenkirk, N. P. Robinson, J. Whelan and B. Bosnich,
Tetrahedron, 1993, 49, 5415.
10 Recent representative papers; chiral iron complex: E. P. Kündich, B.
Bourdin and G. Bernardinelli, Angew. Chem., Int. Ed. Engl., 1994, 33,
1856; Chiral ruthenium complex: D. L. Davies, J. Fawcett, S. A. Garratt
and D. R. Russell, Chem. Commun., 1997, 1351; Chiral rhodium
complex: A. J. Davenport, D. L. Davies, J. Fawcett, S. A. Garratt, L. Lad
and D. R. Russell, Chem. Commun., 1997, 2347; Chiral nickel complex:
S. Kanemasa, Y. Oderaotoshi, H. Yamamoto, J. Tanaka, E. Wada and
D. P. Carran, J. Org. Chem., 1997, 62, 6454; S. Kanemasa, Y.
Oderaotoshi, S. Sakaguchi, H. Yamamoto, J. Tanaka, E. Wada and D. P.
Carran, J. Am. Chem. Soc., 1998, 120, 3074.
A transition state that accounts for the observed ster-
eoselectivities is shown in Fig. 1. The allylstannane approaches
the carbonyl si-face because the re-face is shielded by the
substituent on the oxazoline ring of the Phebox ligand.
In summary, we have demonstrated the effectiveness of
Phebox–RhIII complexes as chiral transition metal Lewis acid
catalysts for the enantioselective addition of allyltributyl-
stannane to aldehydes. Application of these complexes to other
asymmetric reactions is now under investigation.
This work was partly supported by a Grant-in-Aid for
Scientific Research from the Ministry of Education, Science
and Culture, Japan.
Notes and references
† We previously reported the synthesis of 2a by the transmetalation of
RhCl3(H2O)3 and 1a in 47% yield (see ref 12). However, the chemical yield
of Ph-Phebox-derived 2b is very low (16%) by this method.
‡ We have already reported that the (dMe-Pybox)RhCl complex prepared
from the dMe-Pybox and [(c-octene)2RhCl]2 readily reacted with alkyl
chlorides to form RhIII species via an oxidative addition reaction, see ref.
13(a). And recently, Vrieze reported the same oxidative addition of carbon–
11 S. E. Denmark, R. A. Stavenger, A.-M. Faucher and J. P. Edwards,
J. Org. Chem., 1997, 62, 3375; M. A. Stark and C. J. Richards,
Tetrahedron Lett., 1997, 38, 5881.
12 Y. Motoyama, N. Makihara, Y. Mikami, K. Aoki and H. Nishiyama,
Chem. Lett., 1997, 951.
13 (a) H. Nishiyama, M. Horihata, T. Hirai, S. Wakamatsu and K. Itoh,
Organometallics, 1991, 10, 2706; (b) H. F. Haarman, J. M. Ernsting, M.
Kranenburg, H. Kooijman, N. Veldman and K. Vrieze, Organome-
tallics, 1997, 16, 887.
chloride bonds to rhodium(
I) complexes containing terdentate nitrogen
ligands [2,6-(CR1NNR2)2C2H3N], see ref. 13(b).
Communication 8/07716I
132
Chem. Commun., 1999, 131–132