936
Chen Zhang et al. / Chinese Journal of Catalysis 38 (2017) 928–938
Table 4
Glycerol conversion and product selectivity over spent 5Pb‐5Pt/AC catalystsa.
Selectivity (%)
Catalyst
Conversion (%)
PAb
6.1
LA
GLYA
15.2
15.7
TA
GA
2.2
OA
6.5
5.6
AA
7.3
9.4
FA
1.5
0.0
100
47.4
13.8
5Pb‐5Pt /AC‐Co‐DP‐Spent
97.0
12.2
37.5
17.1
15.7
5Pb‐5Pt/AC‐Co‐Im‐500Ar‐Spent
a Reaction conditions: t = 90 °C, p = 1 atm, 10 h, FO2 = 100 mL/min, nLiOH/nglycerol = 1.5, stirring rate = 800 r/min.
b See Table 3.
from 139.4 to 138.6 eV (Fig. 4(b) vs Fig. 9(b)) after the reaction.
The surface Pb species on Co‐DP‐500Ar catalyst remain the
same before and after the reaction, whereas the Pb species on
spent Co‐DP catalysts resemble that of the spent Co‐DP‐500Ar
catalyst, which agrees with the HR‐TEM and XRD results. The
spent Co‐DP and Co‐DP‐500Ar catalysts were evaluated under
the same reaction conditions, and they exhibited slightly better
PA selectivity than the fresh ones (Table 4). This suggested that
the PtPb and PtxPb alloys might be the active sites for PA pro‐
duction. However, their formation and catalytic mechanisms
still require further investigation.
methods greatly affect the catalyst performance, because of the
alteration of Pt and Pb species. The Pt‐Pb alloys are favorable
for glycerol transformation to PA, whereas the Pb3(CO3)2(OH)2
and the surface Pb0 species adversely affect glycerol conver‐
sion.
By
treating
the
5Pb‐5Pt/AC‐Im‐DP
(or
5Pb‐5Pt/AC‐Co‐DP) catalyst under a 500 °C Ar atmosphere,
Pb3(CO3)2(OH)2 can be prevented, and platinum lead alloys can
form. The highest PA yield was 18.4% under the present reac‐
tion conditions. Further optimization and better understanding
of the reaction are required.
We propose a possible reaction pathway for glycerol oxida‐
tion to PA and other products (Scheme 1). Glycerol is first de‐
hydrogenated to form intermediates, followed by their dehy‐
dration and intramolecular Cannizzaro rearrangement to LA
[33,21]. The introduction of Pb was beneficial for glycerol con‐
version when Pb3(CO3)2(OH)2 and surface Pb0 species were
absent, and the presence of platinum lead alloys favored the
transformation of LA to PA.
References
[1] S. Bagheri, N. M. Julkapli, W. A. Yehye. Renewable Sustainable En‐
ergy Rev., 2015, 41, 113–127.
[2] M. Anitha, S. K. Kamarudin, N. Kofli. Chem. Eng. J., 2016, 295,
119–130.
[3] C. H. Zhou, J. N. Beltramini, Y. X. Fan, G. Q. Lu. Chem. Soc. Rev.,
2008, 37, 527–549.
[4] B. Katryniok, H. Kimura, E. Skrzyńska, J. S. Girardon, P. Fongarland,
M. Capron, R. Ducoulombier, N. Mimura, S. Paul, F. Dumeignil.
Green Chem., 2011, 13, 1960–1979.
4. Conclusions
[5] A. Villa, N. Dimitratos, C. E. Chan‐Thaw, C. Hammond, L. Prati, G. J.
Hutchings. Acc. Chem. Res., 2015, 48, 1403–1412.
[6] L. F. Gong, Y. Lu, Y. J. Ding, R. H. Lin, J. W. Li, W. D. Dong, T. Wang,
W. M. Chen. Appl. Catal. A, 2010, 390, 119–126.
[7] W. T. Luo, Y. Lyu, L. F. Gong, H. Du, M. Jiang, Y. J. Ding. Chin. J. Catal.,
2016, 37, 2009–2017.
A one‐step production of PA by selective oxidation of glyc‐
erol was investigated. Both the Pb loading and the preparation
[8] G. S. Foo, D. Wei, D. S. Sholl, C. Sievers. ACS Catal., 2014, 4,
3180–3192.
[9] C. J. Jia, Y. Liu, W. Schmidt, A. H. Lu, F. Schüth. J. Catal., 2010, 269,
71–79.
[10] M. Dusselier, P. Van Wouwe, A. Dewaele, E. Makshina, B. F. Sels.
Energy Environ. Sci., 2013, 6, 1415–1442.
[11] A. Corma, S. Iborra, A. Velty. Chem. Rev., 2007, 107, 2411–2502.
[12] P. Xu, J. H. Qiu, C. Gao, C. Q. Ma. J. Biosci. Bioeng., 2008, 105,
169–175.
[13] T. Yasukawa, W. Ninomiya, K. Ooyachi, N. Aoki, K. Mae. Ind. Eng.
Chem. Res., 2011, 50, 3858–3863.
[14] H. H. C. M. Pinxt, B. F. M. Kuster, G. B. Marin. Appl. Catal. A., 2000,
191, 45–54.
[15] T. Tsujino, S. Ohigashi, S. Sugiyama, K. Kawashiro, H. Hayashi. J.
Mol. Catal., 1992, 71, 25–35.
[16] C. Zhang, T. Wang, Y. J. Ding. Appl. Catal. A, 2017, 533, 59–65.
[17] T. V. Finogenova, I. G. Morgunov, S. V. Kamzolova, O. G.
Chernyavskaya. Appl. Biochem. Microbiol., 2005, 41, 418–425.
[18] S. Sugiyama, T. Kikumoto, H. Tanaka, K. Nakagawa, K. I. Sotowa, K.
Maehara, Y. Himeno, W. Ninomiya. Catal. Lett., 2009, 131,
129–134.
Scheme 1. Proposed mechanism for selective oxidation of glycerol over
xPb‐5Pt/AC catalysts.
[19] M. Ai. Appl. Catal. A, 2002, 234, 235–243.
[20] L. S. Sharninghausen, J. Campos, M. G. Manas, R. H. Crabtree. Nat.