R. López-Medina et al. / Catalysis Today 158 (2010) 139–145
145
case of samples with high coverages decreases the activity during
methanol oxidation, since the amount of MOx species on the sur-
face decreases. However, the yield to acrylic acid during propane
partial oxidation increases. Thus, tellurium is able to interact with
molybdenum to form crystalline aggregates visible by XRD (Fig. 1),
selective to the acrylic acid formation. At high coverage all the
hydroxyl groups from the alumina support must be covered, thus,
the acidic activity detected in this case must be due to surface acidic
Mo6+ and/or Nb5+ sites.
[12] M.O. Guerrero Pérez, J.N. Al-Saeedi, V.V. Guliants, M.A. Ban˜ares, Appl. Catal. A
260 (2004) 93–99.
[13] M.O. Guerrero Pérez, L.J. Alemany, Appl. Catal. A 341 (2008) 119–126.
[14] V.V. Guliants, R. Bhandari, J.N. Al-Saeedi, V.K. Vasudevan, R.S. Soman, M.O.
Guerrero Pérez, M.A. Ban˜ares, Appl. Catal. A 274 (2004) 123–132.
[15] M.O. Guerrero Pérez, M.C. Herrera, I. Malpartida, M.A. Larrubia, L.J. Alemany,
Catal. Today 133–135 (2008) 919–924.
[16] P. Korovchenko, N.R. Shiju, A.K. Dozier, U.M. Graham, M.O. Guerrero-Pérez, V.V.
Guliants, Top. Catal. 50 (2008) 43–51.
[17] M.O. Guerrero Pérez, M.A. Ban˜ares, Catal. Today 142 (2009) 245–251.
[18] M.O. Guerrero Pérez, M.A. Ban˜ares, Appl. Catal. A 274 (2004) 123–132.
[19] P. Korovchenko, N.R. Shiju, A.K. Dozier, U.M. Graham, M.O. Guerrero-Pérez, V.V.
Gulian, Top. Catal. 50 (2008) 43–51.
[20] B. Kilos, M. Aouine, I. Nowak, M. Ziolek, J.C. Volta, J. Catal. 224 (2004) 314–325.
[21] I. Nowak, M. Ziolek, Chem. Rev. 99 (1999) 3603–3624.
[22] M. Ziolek, Catal. Today 78 (2003) 47–64.
[23] V.V. Atuchin, I.E. Kalabin, V.G. Kesler, N.V. Pervukhina, J. Electron Spectrosc.
Relat. Phenom. 142 (2005) 129–134.
[24] M. Ziolek, I. Nowak, Catal. Today 78 (2003) 543–553.
[25] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photo-
electron Spectroscopy, Perkin-Elmer, USA, 1992.
[26] R. Häggblad, J.B. Wagner, B. Deniau, J.M.M. Millet, J. Holmberg, R.K. Grasselli, S.
Hansen, A. Andersson, Top. Catal. 50 (2008) 52–65.
5. Conclusions
The combined information on reactive properties (methanol
probe) and structural features help understanding structure–
activity relationships. These results indicate that methanol probe
reaction is a very useful tool to characterize the active centers
present on the surface of catalysts, which complement structural
characterization data, such as XRD, XPS, UV–vis and Raman spec-
troscopy.
[27] A.M. Gaffney, S. Chaturvedi, M.B. Clark Jr., S. Han, D. Le, S.A. Rykov, J.G. Chen, J.
Catal. 229 (2005) 12–23.
For the catalysts studied here, combined probe reaction and
structural characterization confirm that propane conversion to
acrylic acid depends on both structural and reactive features. Effi-
cient catalysts possess both, acid and redox sites and the right
kind of structure, such sites are efficient when the catalyst contains
mixed oxide phases in which vanadium and molybdenum possess
intermediate oxidation states. But when the catalyst contains dis-
persed oxides or mixed oxides in high-oxidation state, these not
work for propane to acrylic acid.
[28] J. Holmberg, S. Hansen, R.K. Grasselli, A. Andersson, Top. Catal. 38 (2006) 17–29.
[29] P. DeSanto Jr., D.J. Buttrey, R.K. Grasselli, W.D. Pyrz, C.G. Lugmair, A.F. Volpe Jr.,
T. Vogt, B.H. Toby, Top. Catal. 38 (2006) 31–40.
[30] A.M. Venezia, Catal. Today 77 (2003) 359–370.
[31] F. Ivars, B. Solsona, E. Rodríguez Castellón, J.M. López Nieto, J. Catal. 262 (2009)
35–43.
[32] R. Häggblad, J.B. Wagner, S. Hansen, A. Andersson, J. Catal. 258 (2008) 345–
355.
[33] G.Ya. Popova, T.V. Andrushkevich, G.I. Aleshina, L.M. Plyasova, M.I. Khramov,
Appl. Catal. A 328 (2007) 195–200.
[34] M. Roussel, M. Bouchard, E. Bordes Richard, K. Karim, S. Al-Sayari, Catal. Today
99 (2005) 77–87.
[35] J. Holmberg, R.K. Grasselli, A. Andersson, Top. Catal. 23 (2003) 55–63.
[36] L. Yuan, V.V. Guliants, J. Porous Mater. 16 (2009) 613–622.
[37] N. Haddad, E. Bordes Richard, A. Barama, Catal. Today 142 (2009) 215–219.
[38] M. Roussel, S. Barama, A. Löfberg, S. Al-Sayari, K. Karim, E. Bordes Richard, Catal.
Today 141 (2009) 288–293.
[39] N.R. Shiju, V.V. Guliants, Catal. Commun. 9 (2008) 2253–2256.
[40] N.R. Shiju, X. Liang, A.W. Weimer, C. Liang, S. Dai, V.V. Guliants, J. Am. Chem.
Soc. 130 (2008) 5850–5851.
Acknowledgements
COST action D36, WG No. D36/0006/06, the Polish Ministry of
Science (Grant No. 118/COS/2007/03) and the Spanish Ministry
of Science and Innovation (Grant No. CTQ2008/02461/PPQ) are
acknowledged for the financial support. R.L.M. thanks MAEC-AECID
(Spain) for his pre-doctoral fellowship and COST D36 for the finan-
cial support (STM) during his stay. Authors thank Elizabeth Rojas
García (ICP-CSIC) for her help with catalytic tests and to Olaf Torno
(SASOL Germany GmbH) for providing alumina support.
[41] P. Botella, A. Dejoz, M.C. Abello, M.I. Vázquez, L. Arrúa, J.M. López Nieto, Catal.
Today 142 (2008) 272–277.
[42] M.A. Ban˜ares, I.E. Wachs, J. Raman Spectrosc. 33 (2002) 359–380.
[43] P.A. Spevack, N.S. Mclntyre, J. Phys. Chem. 96 (1992) 9029.
[44] G. Mestl, Top. Catal. 38 (2006) 69–82.
[45] G. Mestl, J. Raman Spectrosc. 33 (2002) 333–347.
[46] S.A. Holmes, J. Al-Saeedi, V.V. Guliants, P. Boolchand, D. Georgiev, U. Hackler, E.
Sobkow, Catal. Today 67 (2001) 403–409.
References
[47] L. Yuan, V.V. Guliants, M.A. Ban˜ares, S.J. Khatib, Top. Catal. 49 (2008) 268–
280.
[1] V.V. Guliants, H.H. Brongersma, A. Knoester, A.M. Gaffney, S. Han, Top. Catal. 38
(2006) 41–50.
[2] M.O. Guerrero-Pérez, T. Kim, M.A. Ban˜ares, I.E. Wachs, J. Phys. Chem. C 112
[48] X. Yang, W. Zhang, R. Feng, W. Ji, C.T. Au, Catal. Lett. 124 (2008) 288–296.
[49] B. Solsona, M.I. Vázquez, F. Ivars, A. Dejoz, P. Concepción, J.M. López Nieto, J.
Catal. 252 (2007) 271–280.
(2008) 16858–16863.
[50] M.O. Guerrero Pérez, M.C. Herrera, I. Malpartida, M.A. Larrubia, L.J. Alemany,
M.A. Ban˜ares, Catal. Today 126 (2007) 177–183.
[51] J.M. Oliver, J.M. López Nieto, P. Botella, Catal. Today 96 (2004) 241–249.
[52] P. Botella, E. García González, B. Solsona, E. Rodríguez Castellón, J.M. González
Calbet, J.M. López Nieto, J. Catal. 265 (2009) 43–53.
[3] J.M. Tatibouët, H. Lauron Pernot, J. Mol. Catal. A 171 (2001) 205–216.
[4] L.E. Briand, W.E. Farneth, I.E. Wachs, Catal. Today 96 (2004) 211.
[5] X. Wang, I.E. Wachs, Catal. Today 96 (2004) 211.
[6] I.E. Wachs, J.M. Jehng, W. Ueda, J. Phys. Chem. B 109 (2005) 2275–2284.
[7] S.K. Korhonen, M.A. Ban˜ares, J.L.G. Fierro, A.O.I. Krause, Catal. Today 126 (2007)
235–247.
[53] P. Botella, P. Concepción, J.M. López Nieto, Y. Moreno, Catal. Today 99 (2005)
51–57.
[8] I.E. Wachs, Y. Chen, J.M. Jehng, L.E. Briand, T. Tanaka, Catal. Today 78 (2003)
13–24.
[54] B. Solsona, J.M. López Nieto, J.M. Oliver, J.P. Gumbau, Catal. Today 91/92 (2004)
247–250.
[9] H. Liu, E. Iglesia, J. Phys. Chem. B 109 (2005) 2155–2163.
[10] J.M. Tatibouët, Appl. Catal. A 148 (1997) 213–252.
[11] S.A.R.K. Deshmukh, M. van Sint Annaland, J.A.M. Kuipers, Appl. Catal. A 289
(2005) 240–255.
[55] P. Botella, A. Dejoz, J.M. López Nieto, P. Concepción, M.I. Vázquez, Appl. Catal.
A 298 (2006) 16–23.
[56] I.E. Wachs, L.E. Briand, J.M. Jehng, L. Burcham, X. Gao, Catal. Today 57 (2000)
323–330.