Pyrolyses of Aromatic Azines
J. Phys. Chem. A, Vol. 101, No. 38, 1997 7073
(9) Jones, J.; Bacskay, G. B.; Mackie, J. C.; Doughty, A. J. Chem.
Soc., Faraday Trans. 1995, 91, 1587.
(10) Doughty, A.; Mackie, J. C. J. Chem. Soc., Faraday Trans. 1994,
90, 541.
(11) Doughty, A.; Mackie, J. C.; Palmer, J. M. 25th International
Symposium on Combustion; The Combustion Institute: Pittsburgh, 1994;
p 893.
the reactions involved reveals that the real reason for the faster
consumption of the azines, besides the reduced C-H fission
barriers, is the ease of dissociation of all the large radicals,
including the azyls and the adducts formed by CN addition to
the azines.
(12) (a) Kiefer, J. H.; Zhang, Q.; Kern, R. D.; Chen, H.; Yao, J.; Jursic,
B. S. 26th International Symposium on Combustion; The Combustion
Institute: Pittsburgh, 1996; Vol. I, p 651. (b) Jursic, B. S. J. Phys. Chem.
A 1997, 101, 2345.
(13) Kiefer, J. H.; Manson, A. C. ReV. Sci. Instrum. 1981, 52, 1392.
(14) Bru¨hl, J. W. Z. Phys. Chem. 1897, 22, 481.
Summary and Conclusions
This study has investigated the pyrolyses of pyrazine,
pyrimidine, and pyridine using the combined LS and TOF
techniques in the shock tube. The experiments cover the
temperature range 1600-2300 K for pressures of 150-350 Torr.
The LS gradient data clearly substantiate the chain nature of
the azine pryolyses which are initiated mainly by ring C-H
fission with a well-resolved induction period. The LS data
further allow an unambiguous comparison of the initial C-H
fission rates for azines. RRKM fits to these rate constants, with
(15) Kiefer, J. H.; Mizerka, L. J.; Patel, M. R.; Wei, H. C. J. Phys.
Chem. 1985, 89, 2013.
(16) Melius, C. F. Calculation of Heat of Formation and Free Energy,
(17) Benson, S. W. Thermochemical Kinetics; John Wiley: New York,
1976.
(18) Harland, P. W. Int. J. Mass Spectrom. Ion Processes 1986, 70,
231.
a constant ∆E
of 400 cm-1 and η (Gorin restriction
down
parameter) of 0.008, both usual for large molecules, yield fission
barriers of 103 ( 2 kcal/mol for pyrazine, 98 ( 2 for pyrimidine,
and 105 ( 2 for pyridine. Comparing with the 112 kcal/mol
for the benzene dissociation barrier, the derived barriers agree
with the assessment by Doughty et al.10,11 that the nitrogen lone
pair reduces the adjacent C-H bond energy in these hetero-
cycles. The magnitudes of the azine barriers are attributed to
the contribution of additional resonance structures of azyl
radicals resulting from the interaction between the nitrogen lone
pair(s) and the neighboring C-H bond.
Furthermore, substantially improved chain mechanisms,
including pathways to the major products HCN, C2H2, CHCCN,
and C4H2, have been proposed to successfully model the LS
and TOF data of all the azines. The modeling is assisted by
high-level calculations for the imine N-H bond energy, which
is then used to estimate the properties of several key radicals
whose dissociation rates and branching ratios largely control
the formation of chain carriers. In particular, the mechanisms
confirm the importance of CN in azine pyrolyses; its primary
role is its highly exothermic addition to a parent azine followed
by a series of very facile dissociations which finally generate
the CHCHCN radical, a precursor to CHCCN and CH2CHCN.
This scheme is consistent with the TOF observation of a severe
reduction of CHCCN concentration in mixtures containing initial
amounts of H2 for all the azine experiments at high temperatures.
The fast overall decomposition of azines is explained in part
by the reduced C-H fission barriers, but mainly by the ease of
dissociation of all large secondary radicals formed here by
dissociation and abstraction reactions.
(19) Dorofeeva, O. V.; Gurvich, L. V. Thermochim. Acta 1991, 178,
273.
(20) Dibeler, V. H.; Reese, R. M.; Franklin, J. L. J. Am. Chem. Soc.
1961, 83, 1813.
(21) (a) Chu, J. Y.; Nguyen, T. T.; King, K. D. J. Phys. Chem. 1982,
86, 443. (b) Stull, D. R.; Westrum, E. F., Jr.; Sinke, G. C. The Chemical
Thermodynamics of Organic Conpounds; John Wiley: New York, 1969.
(22) Besseris, G.; J.; Kiefer, J. H.; Zhang, Q.; Walker, J. A.; Tsang, W.
Int. J. Chem. Kinet. 1995, 27, 691.
(23) Tsang, W. Combust. Flame 1989, 78, 71.
(24) Miller, L. A.; Barker, J. R. J. Chem. Phys. 1996, 105, 1383.
(25) Tsang, W.; Bedanov, V.; Zachariah, M. R. J. Phys. Chem. 1996,
100, 4011.
(26) (a) Tsang, W.; Hampson, R. F. J. Phys. Chem. Ref. Data 1986, 15,
No. 3. (b) Tsang, W. 1987, 16, No. 3; 17, No. 2; 19, No. 1; 20, No. 2.
(27) Nicovich, J. M.; Ravishankara, A. R. J. Phys. Chem. 1984, 88,
2534.
(28) Duran, R. P.; Amorebieti, V. T.; Colussi, A. J. J. Phys. Chem. 1988,
92, 636.
(29) Westmoreland, P. R.; Dein, A. M.; Howard, J. B.; Longwell, J. P.
J. Phys. Chem. 1989, 93, 8171.
(30) Ackermann, L.; Hippler, H.; Pagsberg, P.; Reihs, C.; Troe, J. J.
Phys. Chem. 1990, 94, 5247.
(31) Tsang, W. J. Phys. Chem. 1986, 90, 1152.
(32) (a) Westley, F.; Frizzell, D. H.; Herron, J. T.; Hampson, R.F.;
Mallard, W. J. NIST Chemical Kinetics Database; NIST Standard Reference
Data: Gaithersburg, MD, 1993. (b) Sims, I. R.; Queffelec, J.-L.; Travers,
D.; Rowe, B. R.; Herbert, L. B.; Karthauser, J.; Smith, I. W. M. Chem.
Phys. Lett. 1993, 211, 461. (c) Herbert, L.; Smith, I. W. M.; Spencer-Smith,
R. D. Int. J.Chem. Kinet. 1992, 24, 791. (d) Lichtin, D. A.; Lin, M. C.
Chem. Phys. 1985, 96, 473.
(33) Lifshitz, A. Private communication, 1995.
(34) Ha, T. K.; Gey, E. J. Mol. Struct. (THEOCHEM) 1994, 306, 197.
(35) Pedley, J. B.; Naylor, R. D.; Kirby, S. P. Thermochemical Data of
Organic Compounds, 2nd ed.; Chapman and Hall: London, 1986.
(36) Hewett, K. B.; Shen, M.; Brummel, C. L.; Philips, L. A. J. Chem.
Phys. 1994, 100, 4077.
Acknowledgment. Research was supported by the U.S.
Department of Energy under DE-FGO2-85ER13384 (J.H.K.)
and DE-FGO5-85ER13400 (R.D.K.).
(37) Ponger, G.; Fogarasi, G. Spectrochim. Acta 1992, 48A, 243.
(38) Halverson, F.; Stamm, R. F.; Whalen, J. J. J. Chem. Phys. 1948,
16, 808.
References and Notes
(39) Evans, R. A.; Lorencak, P.; Ha, T.-K.; Wentrup, C. J. Am. Chem.
Soc. 1991, 113, 7261.
(40) Fernholt, L.; Rømming, C. Acta Chem. Acad. A 1978, 32, 271.
(41) Herbert, L.; Smith, I. W. M.; Spencer-Smith, R. D. Int. J. Chem.
Kinet. 1992, 24, 791.
(42) Zabarnick, S.; Lin, M. C. J. Chem. Phys. 1989, 134, 185.
(43) Wooldridge, S. T.; Hanson, R. K.; Bowman, C. T. Int. J. Chem.
Kinet. 1995, 27, 1075.
(44) Kiefer, J. H.; Sidhu, S. S.; Kern, R. D.; Xie, K.; Chen, H.; Harding,
L. B. Combust. Sci. Technol. 1992, 82, 101.
(45) Lifshitz, A.; Bidani, M.; Suslensky, A.; Tamburu, C. J. Phys. Chem.
1989, 93, 1369.
(1) Axworthy, A. E.; Dayan, V. H.; Martin, G. B. Fuel 1987, 57, 29.
(2) Houser, T. J.; McCarville, M. E.; Biftu, T. Int. J. Chem. Kinet.
1980, 12, 555.
(3) Houser, T. J.; Hull, M.; Alway, R. M.; Biftu, T. Int. J. Chem. Kinet.
1980, 12, 569.
(4) Leidreiter, H. I.; Wagner, H. Gg. Z. Phys. Chem. Neue Folge 1987,
153, 99.
(5) Rawlins, W. T.; Tanzawa, T.; Schertzer, S. P.; Kreck, R. H. Final
Report to DOE, 1983, Contract No. DEAC228OPC30392.
(6) Kern, R. D.; Yong, J. N.; Kiefer, J. H.; Shah, J. N. 16th Int. Symp.
Shock Tubes WaVes 1987, 43.
(7) Mackie, J. C.; Colket, M. B.; Nelson, P. F. J. Phys. Chem. 1990,
94, 4099.
(46) Chase, M. W., Jr.; Davies, C. A.; Downey, J. R., Jr.; Frurip, D. J.;
McDonald, R. A.; Syverud, A. N. J. Phys. Chem. Ref. Data 1985, 14, Suppl.
1.
(8) Kikuchi, O.; Hondo, Y.; Morihashi, K.; Nakayama, M. Bull. Chem.
Soc. Jpn. 1988, 61, 291.