Communications
oxidative cleavage of cis-1,2-cyclohexanediol to give hexane-
[6] Representative procedure: A freshly prepared solution of
dimethyldioxirane in acetone (0.1m, 90 mL, 9 mmol) was
added to a stirred mixture of 3c (1.23 g, 3.0 mmol) in dry
dichloromethane (15 mL) at 08C, upon which the solution
immediately turned light yellow. The reaction mixture was
stirred at room temperature for an additional 8 h, then filtered,
and the precipitate collected was washed with diethyl ether and
dichloromethane, and dried under vacuum to afford 4c (0.86 g,
65%) as a white microcrystalline solid. M.p. 1568C (decomp);
dial in 30% yield (Table 1, entry 8). It should be emphasized
that, according to literature data,[1] iodylbenzene (PhIO ) and
2
other noncyclic iodylarenes do not react with alcohols in the
absence of acid catalysis. In agreement with their structural
features, the oxidizing reactivity of 2-iodoxybenzamides 4 is
closer to that of the benziodoxole-based pentavalent iodine
reagents.
In conclusion, we have reported the preparation and
structure of novel 2-iodoxybenzamides 4, which are stable and
soluble compounds with unique and synthetically valuable
oxidizing properties. X-Ray data on 4c reveals a pseudo-
benziodoxole structure in which intramolecular I···O second-
ary bonds partially replace the intermolecular I···O secondary
bonds, thus disrupting the polymeric structure characteristic
RT
1
[a]D = ꢀ34 (c = 0.0023, CH
CN);
H NMR (300 MHz,
3
3
[
D ]DMSO, 258C): d = 9.66 (d, J(H,H) = 7.8 Hz, 1H; NH),
6
3
8
.27 (m, 2H; Ar), 7.95 (t, J(H,H) = 7.6 Hz, 1H; Ar), 7.76 (t,
3
J(H,H) = 7.6 Hz, 1H; Ar), 7.27 (m, 5H; Ph), 4.74 (m, 1H; CH),
1
3
3
.67 (s, 3H; OCH ), 3.21 ppm (m, 2H; CH ); C NMR
3
2
(
75.5 MHz, [D ]DMSO, 258C): d = 171.2, 166.1, 149.1, 137.1,
6
1
3
33.1, 131.3, 128.9, 128.3, 127.9, 127.2, 126.6, 123.1, 54.7, 52.1,
5.8 ppm; IR (KBr): n˜ = 3220 (NH), 1744 (C O), 1620 (C O),
¼
¼
ꢀ
1
of PhIO and other previously reported iodylarenes. This
760 cm (I¼O); elemental analysis: calcd for C H INO : C
2
17 16
5
structural characteristic substantially increases the solubility
and stability of these reagents relative to other IV reagents.
46.28, H 3.66, N 3.17, I 28.76; found: C 46.07, H 3.69, N 3.17, I
(78). See
+
28.47; MS(CI): m/z (%): 410.0 [MꢀMeOHþH]
Supporting Information for additional synthetic and character-
ization details.
Received: January 24, 2003 [Z51018]
[
7] X-ray diffraction data were collected on a Bruker PLATFORM/
SMART 1000 CCDdiffractometer with graphite monochrom-
ated MoKa radiation (0.71073 ). Crystal data for 4c
C H I N O ·C H10.50N3.50: M = 1908.52, colorless, 0.46 0.22
Keywords: alcohols · hypervalent compounds · iodine ·
.
oxidation · synthetic methods
6
8
64
4
4
20
7
r
3
0
.07 mm , monoclinic, P2 (No. 4), a = 11.1810(8), b = 30.221(2),
1
3
c = 12.0210(9) , b = 100.468(2)8, V= 3994.2(5) , Z = 2,
[
1] a) A. Varvoglis, Hypervalent Iodine in Organic Synthesis,
Academic Press, London, 1997; b) V. V. Zhdankin, P. J. Stang,
Chem. Rev. 2002, 102, 2523; c) T. Wirth, Angew. Chem. 2001, 113,
ꢀ3
ꢀ1
1calcd = 1.587 gcm , m = 1.634 mm . Data collection and refine-
ment: w scans (0.28; 20 s exposures), T= ꢀ808C, 2q max =
5
2.808, total data collected = 25445, independent reflections =
5852 (Rint = 0.0366). The data were corrected for absorption
2889; Angew. Chem. Int. Ed. 2001, 40, 2812; d) H. Tohma, Y.
1
Kita, Top. Curr. Chem. 2003, 224, 209.
with a multiscan model by using SADABS (transmission factors:
[
2] a) R. Mazitschek, M. Mulbaier, A. Giannis, Angew. Chem. 2002,
0
.8942–0.5203). The structure was solved by direct methods
1
14, 4216; Angew. Chem. Int. Ed. 2002, 41, 4059; b) K. C.
Nicolaou, T. Montagnon, P. S. Baran, Angew. Chem. 2002, 114,
035; Angew. Chem. Int. Ed. 2002, 41, 993; K. C. Nicolaou,
D. L. F. Gray, T. Montagnon, S. T. Harrison, Angew. Chem. 2002,
14, 1038; Angew. Chem. Int. Ed. 2002, 41, 996; K. C. Nicolaou,
T. Montagnon, P. S. Baran, Y.-L. Zhong, J. Am. Chem. Soc. 2002,
24, 2245; K. C. Nicolaou, P. S. Baran, Y.-L. Zhong, S. Bar-
luenga, K. W. Hunt, R. Kranich, J. A. Vega, J. Am. Chem. Soc.
002, 124, 2233; e) K. C. Nicolaou, K. Sugita, P. S. Baran, Y.-L.
2
(SHELXS-86) and full-matrix least-squares refinement on F of
9
1
1
04 variables (SHELXL-93) converged to R = 0.0451 (for
1
1
2
2
3250 observed data with F ꢁ 2s(F )), wR = 0.1093, and S =
o
o
2
2
o
2
o
.036 (all data, F ꢁ ꢀ3s(F )); Flack parameter= 0.01(2). Non-
1
hydrogen atoms were refined anisotropically; hydrogen atoms
were included in calculated positions using a riding model.
1
ꢀ3
Residual electron density = 1.413 and ꢀ0.696 e . CCDC-
200547 (4c) contains the supplementary crystallographic data
2
for this paper. These data can be obtained free of charge via
www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cam-
bridge Crystallographic Data Centre, 12, Union Road, Cam-
bridge CB21EZ, UK; fax: (+ 44)1223-336-033; or deposit@
ccdc.cam.ac.uk).
Zhong, J. Am. Chem. Soc. 2002, 124, 2221; K. C. Nicolaou, P. S.
Baran, Y.-L. Zhong, K. Sugita, J. Am. Chem. Soc. 2002, 124,
2212.
[
[
3] P. J. Stevenson, A. B. Treacy, M. Nieuwenhuyzen, J. Chem. Soc.
Perkin Trans. 2 1997, 589.
[
[
8] V. V. Zhdankin, Rev. Heteroat. Chem. 1997, 17, 133.
9] a) N. W. Alcock, J. F. Sawyer, J. Chem. Soc. Dalton Trans. 1980,
4] In addition to the chirality of the amino acid derived moiety, the
iodine is also a potential stereogenic center, as is seen in the solid
state. As the preferred conformation/configuration about the
iodonium center in solution is not known, the enantiomeric/
diastereomeric relationship between 4a and 4b can not be
established.
115; b) A. R. Katritzky, G. P. Savage, G. J. Palenik, K. Qian, Z.
Zhang, H. D. Durst, J. Chem. Soc. Perkin Trans. 2 1990, 1657;
c) D. G. Naae, J. Z. Gougoutas, J. Org. Chem. 1975, 40, 2129.
[10] a) D. Macikenas, E. Skrzypczak-Jankun, J. D. Protasiewicz,
Angew. Chem. 2000, 112, 2063; Angew. Chem. Int. Ed. 2000,
39, 2007; b) D. Macikenas, E. Skrzypczak-Jankun, J. D. Prota-
siewicz, J. Am. Chem. Soc. 1999, 121, 7164; c) U. H. Hirt,
M. F. H. Schuster, A. N. French, O. G. Wiest, T. Wirth, Eur. J.
Org. Chem. 2001, 1569; d) U. H. Hirt, B. Spingler, T. Wirth, J.
Org. Chem. 1998, 63, 7674.
[
5] a) V. V. Zhdankin, A. E. Koposov, J. T. Smart, R. R. Tykwinski,
R. McDonald, A. Morales-Izquierdo, J. Am. Chem. Soc. 2001,
123, 4095; b) V. V. Zhdankin, R. M. Arbit, B. J. Lynch, P. Kiprof,
V. G. Young, J. Org. Chem. 1998, 63, 6590; c) H. J. Barber, M. A.
Henderson, J. Chem. Soc. C 1970, 862; d) T. M. Balthazar, D. E.
Godaz, B. R. Stults, J. Org. Chem. 1979, 44, 1447.
2
196
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2003, 42, 2194 – 2196