Journal of the American Chemical Society
symmetrically substituted cyclopropyl ketone 31 also pro-
Page 4 of 5
ACKNOWLEDGMENT
1
2
3
4
5
6
7
8
vides excellent stereoselectivity as well as exclusive chemose-
lectivity for the formation of enantioenriched cyclopentane
32 and not its constitutional isomer (eq 3).
We thank Ilia Guzei for determination of the absolute configura-
tion of 11 by X-ray crystallographic analysis. The authors are
grateful to the NIH (GM098886) for financial support and to
Sigma–Aldrich for a generous gift of RuCl3. The NMR facilities
at UW–Madison are supported by a generous gift from the Paul
J. Bender fund.
While the scope of this new asymmetric [3+2] cycloaddi-
tion is complementary to the established enantioselective
reactions of donor-acceptor cyclopropanes, the aryl ketone
moiety required for the initial one-electron reduction process
imposes an undesirable limitation on scope. Thus we won-
dered if the aryl ketone could be removed with retention of
stereochemistry through a Baeyer–Villiger cleavage. Indeed,
the p-methoxyphenyl ketone cycloadduct 19 undergoes
completely regioselective oxidation to afford 33 in good
yield, the activated ester of which is poised for further ma-
nipulation into diverse carboxylic acid derivatives. Under
identical conditions, p-trifluoromethylphenyl ketone 34 un-
dergoes regiocomplementary oxidation to afford benzoate
ester 35. Thus, the applicability of this [3+2] photocycload-
dition method to reactions of electronically varied aryl ke-
tones provides a flexible strategy for the conversion of the
enantioenriched products to a diverse array of five-
membered carbocyclic derivatives.
9
REFERENCES
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
1
(a) Walsh, P. J.; Kozlowski, M. C. Fundamentals of Asymmetric Cataly-
sis, University Science Books: Sausalito, 2009. (b) Ojima, I. Catalytic
Asymmetric Synthesis, Wiley: Hoboken, 2010. (c) Gawley, R. E.; Aubé, J.
Principles of Asymmetric Synthesis, 2nd ed.; Elsevier: Oxford, 2012; Chapter
6.
2
For reviews on asymmetric photochemical synthesis, see: (a) Rau, H.
Chem. Rev. 1983, 83, 535–547. (b) Inoue, Y. Chem. Rev. 1992, 92, 741–
770. (c) Brimioulle, R.; Lenhart, D.; Maturi, M. M.; Bach, T. Angew. Chem.
Int. Ed. 2015, 54, 3872–3890.
3
(a) Müller, C.; Bauer, A.; Bach, T. Angew. Chem. Int. Ed. 2009, 48,
6640–6642. (b) Müller, C.; Bauer, A.; Maturi, M. M.; Cuquerella, M. C.;
Miranda, M. A.; Bach, T. J. Am. Chem. Soc. 2011, 133, 16689–16697. (c)
Maturi, M. M.; Wenninger, M.; Alonso, R.; Bauer, A.; Pöthig, A.; Riedle, E.;
Bach, T. Chem. Eur. J. 2013, 19, 7461–7472. (d) Alonso, R.; Bach, T. An-
gew. Chem. Int. Ed. 2014, 53, 4368–4371. (e) Vallavoju, N.; Selvakumar, S.;
Jockusch, S.; Sibi, M. P.; Sivaguru, J. Angew. Chem. Int. Ed. 2014, 53, 5604–
5608. (f) Maturi, M. M.; Bach, T. Angew. Chem. Int. Ed. 2014, 53, 7661–
7664.
Scheme 3. Cleavage of the aryl ketone moiety.
MeO
Ph
O
Ph
O
m-CPBA
O
4
(a) Guo, H.; Herdtweck, E.; Bach, T. Angew. Chem. Int. Ed. 2010, 49,
TFA, CH2Cl2
MeO
CO2t-Bu
7782–7785. (b) Brimioulle, R.; Guo, H.; Bach, T. Chem. Eur. J. 2012, 18,
7552–7560. (c) Brimioulle, R.; Bach, T. Angew. Chem. Int. Ed. 2014, 53,
12921–12924. (d) Brimioulle, R.; Bach, T. Science 2013, 342, 840–843.
5 Du, J.; Skubi, K. L.; Schultz, D. M.; Yoon, T. P. Science 2014, 344, 392–
396.
CO2t-Bu
19 91% ee
33 84% yield, 89% ee
F3C
Ph
Ph
O
m-CPBA
O
6
TFA, CH2Cl2
O
Me
Me
Prier, C. K. Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113,
F3C
Me
Me
5322–5363.
34 83% ee
35 82% yield, 83% ee
7
For an application of tandem Lewis acid/photoredox catalysis to an
asymmetric conjugate addition reaction, see: Espelt, L. R.; M
son, I. S.; Wiensch, E. M.; Yoon, T. P. J. Am. Chem. Soc. 2015, 137, 2452–
cPher-
These studies have several important implications. From a
practical perspective, this method provides an asymmetric
catalytic method to assemble structurally complex five-
membered carbocycles, which are a class of compounds that
remain challenging to prepare in enantioenriched form. More
broadly, these results demonstrate that the combination of
chiral Lewis acid and photoredox catalysis offers a robust and
potentially general approach to photochemical stereocontrol
that is broadly applicable to the increasing number of power-
ful transformations achievable using photoredox catalysis.
2455.
8
For a recent review of dual catalysis approaches in photoredox cataly-
sis, see: Hopkinson, M. N.; Sahoo, B.; Li, J.-L.; Glorius, F. Chem. Eur. J.
2014, 20, 3874–3886.
9 Lu, Z.; Shen, M.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 1162-1164.
10
For examples, see: (a) Parsons, A. T.; Johnson, J. S. J. Am. Chem. Soc.
2009, 131, 3122–3123. (b) Parsons, A. T.; Smith, A. G.; Neel, A. J.; John-
son, J. S. J. Am. Chem. Soc. 2010, 132, 9688–9692. (c) Trost, B. M.; Morris,
P. J. Angew. Chem. Int. Ed. 2011, 50, 6167–6170. (d) Xiong, H.; Xu, H.;
Liao, S.; Xie, Z.; Tang, Y. J. Am. Chem. Soc. 2013, 135, 7851–7853. (e)
Hashimoto, T.; Kawamata, Y.; Maruoka, K. Nat. Chem. 2014, 6, 702–705.
11
For examples of the use of (pybox)Gd(III) complexes in asymmetric
ASSOCIATED CONTENT
catalysis, see: (a) Evans, D. A.; Wu, J. J. Am. Chem. Soc. 2003, 125, 10162–
10163. (b) Evans, D. A.; Song, H.-J.; Fandrick, K. R. Org. Lett. 2006, 8,
3351–3354. (c) Suga, H.; Ishimoto, D.; Higuchi, S.; Ohtsuka, M.; Arikawa,
T.; Tsuchida, T.; Kakehi, A.; Baba, T. Org. Lett. 2007, 9, 4359–4362. (d)
Suga, H.; Higuchi, S.; Ohtsuka, M.; Ishimoto, D.; Arikawa, T.; Hashimoto,
Y.; Misawa, S.; Tsuchida, T.; Kakehi, A.; Baba, T. Tetrahedron 2010, 66,
3070–3089.
Supporting Information. The Supporting Information is avail-
tailed experimental procedures and compound characterization
data (PDF); X-ray crystallographic data for 11.
12
(a) Nishiyama, H.; Yamaguchi, S.; Kondo, M.; Itoh, K. J. Org. Chem.
AUTHOR INFORMATION
1992, 57, 4306–4309. (b) Park, S.-B.; Murata, K.; Matsumoto, H.;
Nishiyama, H. Tetrahedron: Asymm. 1995, 6, 2487–2494. (c) Wang, H.;
Wang, H.; Liu, P.; Yang, H.; Xiao, J.; Li, C. J. Mol. Catal. A: Chem. 2008,
Corresponding Author
*tyoon@chem.wisc.edu
ACS Paragon Plus Environment