Advanced Synthesis & Catalysis
10.1002/adsc.202000611
Financial support from the Agencia Estatal de Investigación-
Ministerio de Ciencia, Innovación y Universidades (Spanish
Government) and Fondo Europeo de Desarrollo Regional
enantiomeric excess, using triethylsilane and
trifluoroborane as
Transformation
a
Lewis acid catalyst.
B
exploits the transformation
(European Union) (Grant CTQ2017-84900-P) is acknowledged.
potential of the isoxazol-5-one structure and was used
to determine the absolute stereochemistry of
compound 3aa by chemical correlation with a
compound of known stereochemistry 8. Acidic
hydrolysis of the major diastereomer 3aa gave
quantitatively formamide 6, which was transformed
Access to NMR and MS facilities from the SCSIE-UV is
acknowledged. C. V., A. S.-M and A. L. thank the Spanish
Government for Ramon y Cajal (RyC-2016-20187), Juan de la
Cierva
(IJC2018-036682-I)
and
FPU
pre-doctoral
(FPU18/03038) contracts, respectively.
into the amidoketone 7 by reductive cleavage of the References
[17]
isoxazol-5-one ring with iron.
Further acidic
hydrolysis of the formamide and concomitant
cyclization of the intermediate aminoketone afforded
pyrroline 8 without loss of enantiomeric excess and
in 54% yield over the three steps. Compound 8
obtained in this way was assigned the (2R,3S)
configuration as it showed identical spectroscopical
features and opposite optical rotation sign compared
with the known compound (2S,3R)-8.[ Accordingly,
the absolute stereochemistry for compound 3aa
[1] a) E. Chupakhin, O. Babich, A. Prosekov, L. Asyakina,
M. Krasavin, Molecules 2019, 24, 41654202; b) L.
Hong, R. Wang, Adv. Synth. Catal. 2013, 355,
10231052; c) G. Singh, Z. Desta, Chem. Rev. 2012,
112, 6104–6155; d) A. Jossang, P. Jossang, H. A. Hadi,
T. Sevenet, B. Bodo, J. Org. Chem. 1991, 56,
65276530; e) A. Pfau, P. Plattner, Helv. Chim. Acta
1939, 22, 640654; f) G. Blay, A. M. Collado, B.
García, J. R. Pedro, Tetrahedron 2005, 61,
1085310860.
18]
(
major diastereomer) should be (5S,8R,9R) and for
compound 3aa’ (minor diastereomer) it should be
5S,8S,9S). For the remaining compounds 3, the
[
2] For an excellent review on the use of spirocyclic
(
ligands see: K. Ding, Z. Han, Z. Wang, Chem. Asian J.
stereochemistry of both diastereomers was assigned
upon the assumption of a uniform stereochemical
pathway.[
2
009, 4, 3241.
19]
[
[
[
3] H. Hamada, Y. Itabashi, R.Shang, E. Nakamura, J. Am.
Chem. Soc. 2020, 142, 20592067.
In conclusion, we have developed an efficient,
diastereo- and enantioselective synthesis of novel,
highly functionalized spirocyclic compounds bearing
a spiro quaternary and two tertiary stereocenters. The
new spirocycles feature pyrroline and isoxazol-5-one
rings, which are privileged structures in medicinal
chemistry. The synthesis involved a formal [3+2]
cycloaddition reaction between 4-arylideneisoxazol-
4] Y. Zheng, C. M. Tice, S. B. Singh, Bioorg. Med. Chem.
Lett. 2014, 24, 36733682.
5] C. Pramanik, K. Bapat, P. Patil, S. Kotharkar, Y. More,
D. Gotrane, S. P. Chaskar, U. Mahajan, N. K. Tripathy,
Org. Proc. Res. Dev. 2019, 23, 12521256.
[
[
6]a) R. Rios, Chem. Soc. Rev. 2012, 41, 10601074; b) A.
Ding, M. Meazza, H. Guo, J. W. Yang, R. Rios, Chem.
Soc. Rev. 2018, 47, 5946−5996; c) L. K. Smith, I. R.
Baxendale, Org. Biomol. Chem. 2015, 13, 99079933.
5
-ones and isocyanoacetate esters using a cooperative
catalytic system that englobes bifunctional
a
squaramide/Brønsted base organocatalyst derived
from a Cinchona alkaloid and silver oxide as Lewis
acid. The transformation featured broad scope and
simple operation, and delivered the resulting products
in good yields, good diastereoselectivity (only two
out of four possible diastereomers) and high
enantiomeric excess. The potential applicability of
the method has been shown by several
transformations.
7] a) P-W. Xu, J-S. Yu, C. Chen, Z-Y. Cao, F. Zhou, J.
Zhou, ACS Catal. 2019, 9, 18201882; b) X. Xie, W.
Huang, C. Peng, B. Han, Adv. Synth. Catal. 2018, 360,
1
94–228; c) A. K. Franz, N. V. Hanhan, N. R. Ball-
Jones, ACS Catal. 2013, 3, 540553.
[
8] a) B. D. Morris, M. R. J. Prinsep, A.-F.
Amathaspiramides, J. Nat. Prod. 1999, 62, 688693; b)
M. S. M. Pearson, N. Floquet, C. Bello, P. Vogel, R.
Plantier-Royon, J. Szymoniak, P. Bertus, J.-B. Behr,
Bioorg. Med. Chem. 2009, 17, 80208026; c) K.
Sakamoto, E. Tsujii, F. Abe, T. Nakanishi, M.
Yamashita, N. Shigematsu, S. Izumi, M. Okuhara, J.
Antibiot. 1996, 49, 3744; d) S. Peddi, B. L. Roth, R. A.
Glennon, R. B. Westkaemper, Bioorg. Med. Chem. Lett.
Experimental Section
Experimental procedure for the enantioselective reaction.
Methyl isocyanoacetate (2a, 30 µL, 0.33 mmol) was added
to a solution of 4-arylideneisoxazol-5-one (1, 0.25 mmol),
organocatalyst SQ11 (11.9 mg, 0.025 mmol) and silver
oxide (2.9 mg, 0.0125 mmol) in dichloromethane (19 mL)
protected from light. The reaction was stirred until
complete consumption of compound 1 (TLC, ca. 12 h).
The product 3 was obtained as a two diastereomer mixture
after purification by flash chromatography eluting with
hexane:EtOAc mixtures.
2
004, 14, 2279.
[
[
9] a) M. S. Chande, R. S. Verma, P. A. Barve, R. R.
Khanwelkar, R. B. Vaidya, K. B. Ajaikumar, Eur. J.
Med. Chem. 2005, 40, 11431148; b) V. Padmavathi,
B. J. M. Reddy, A. Baliah, A. Padmaja, D. B. Reddy,
Arkivoc 2005, 14, 1-13.
Acknowledgements
10] a) G. Blay, C. Vila, P. Martinez-Pardo, J. R. Pedro,
Targets Heterocycl. Syst. 2018, 22, 165193; b) A. V.
5
This article is protected by copyright. All rights reserved.