Shirini et al.
Synthesis of Tetrahydrobenzo[b]pyran and Pyranoꢀ2ꢁ3-dꢂpyrimidinone Derivatives
4. F. Hoffmann, M. Cornelius, J. Morell, and M. Fröba, Angew. Chem.
Int. Ed. 45, 3216 (2006).
5. D. Margolese, J. A. Melero, S. C. Christiansen, B. F. Chemelka, and
G. D. Stucky, Chem. Mater. 12, 2448 (2000).
6
7
. L. Mercier and T. J. Pinnavaia, Chem. Mater. 12, 188 (2000).
. S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, and O. Terasaki,
J. Am. Chem. Soc. 121, 9611 (1999).
8. B. J. Melde, B. T. Holland, C. F. Blanford, and A. Stein, Chem.
Mater. 11, 3302 (1999).
9. T. Asefa, M. J. MacLachlan, N. Coombs, and G. A. Ozin, Nature
402, 867 (1999).
1
1
1
1
0. F. Goethals, B. Meeus, A. Verberckmoes, P. Van der Voort, and
I. Van Driessche, J. Mater. Chem. 20, 1709 (2010).
1. Q. H. Yang, J. Liu, H. Zhong, and P. Y. Wang, J. Inorg. Mater.
2
4, 641 ( 2009).
2. N. Mizoshita, T. Tani, and S. Inagaki, Chem. Soc. Rev. 40, 789
2011).
Figure 9. Reusability of Fe O @Ph-PMO-NaHSO in the syn-
thesis of 7-amino-5-(4-chlorophenyl)-2,4-dioxo-1,3,4,5-tetrahydro-2H-
pyrano[2,3-d]pyrimidine-6-carbonitrile (7b).
3
4
4
(
3. W. O. Foye, T. L. Lemke, and D. A. Williams, Principi di Chimica
Farmaceutica, edited by Piccin-Nuova Libraria, Padua, Italy (1991),
p. 416.
mixture, the catalyst was washed with ethanol, dried in
air, and reused with the least change in the reaction time
and yield even after five cycles of the synthesis of the
product (Figs. 8 and 9). The amount of the acidic pro-
tons for both fresh and the recycled catalyst after fifth
run was measured by the neutralization titration as men-
tioned before. According to this, the amount of acidic
protons was changed from 0.8 mmol/g for fresh catalyst
to 0.6 mmol/g for recycled catalyst, whereas this factor
was 0.2 mmol/g for Fe O @Ph-PMO, which showed that
1
1
4. L. L. Andreani and E. Lepi, Bull. Chim. Farm. 99, 583 (1960).
5. O. Bruno, S. Schenone, A. Ranise, E. Barocell, M. Chiavarini,
V. Ballabeni, and S. Bertoni, Arzneim. Forsch. 50, 140 (2000).
16. E. M. Griva, S. Lee, C. W. Siyal, D. S. Duch, and C. A. Nichol,
J. Med. Chem. 23, 327 (1980).
17. G. L. Anderson, J. L. Shim, and A. D. Broom, J. Org. Chem.
1, 1095 (1976).
4
18. M. M. Ghorab and A. Y. Hassan, Phosphorus, Sulfur, Silicon Related
Elem. 141, 251 (1998).
19. D. Heber, C. Heers, and U. Ravens, Pharmazie 48, 537 (1993).
2
0. X. Zh. Lian, Y. Huang, Y. Q. Li, and W. J. Zheng, Monatsh. Chem.
39, 129 (2008).
1. A. Mobinikhaledi and M. A. Bodaghi Fard, Acta Chim. Slov. 57, 931
3
4
1
although washing with water/ethanol leached out a small
2
IP: 46.161.60.137 On: Sun, 17 Mar 2019 02:32:34
amount of NaHSO , due to its highly solubility, the prod-
4
(2010).
Copyright: American Scientific Publishers
ucts were obtained in least change in reaction times and
yields.
22. J. Azizian, A. Shameli, S. Balalaie, M. M. Ghanbari,
Sh. Zomorodbakhsh, M. Entezari, S. Bagheri, and Gh. Fakhrpour,
Orient. J. Chem. 28, 327 (2012).
Delivered by Ingenta
2
2
2
3. E. Sheikhhosseini, D. Ghazanfari, and V. Nezamabadi, Iran. J. Catal.
4
. CONCLUSION
3, 197 (2013).
4. J. Albadi, M. Fadaeian, and F. A. Balout-Bangan, Iran. J. Org. Chem.
In conclusion, Fe O @Ph-PMO-NaHSO as a new
3
4
4
5, 1089 (2013).
nanocatalyst was successfully synthesized and utilized
as an efficient catalyst for the preparation of tetrahy-
drobenzo[b]pyran and pyrano[2,3-d]-pyrimidinone deriva-
tives under mild conditions. This catalyst is thermally
stable, green, recyclable, inexpensive and easy to prepare.
In addition, it can be easily separated from the reaction
mixture and recovered up to five times without any sig-
nificant influence on its activity or the reaction yield. The
operational simplicity, high yields, and easy work-up pro-
cedure associated with this catalytic process give it advan-
tages over the other methods.
5. M. G. Dekamin, M. Eslami, and A. Maleki, Tetrahedron. 69, 1074
(2013).
26. B. Maleki and S. Sedigh Ashrafi, RSC Adv. 4, 42873 (2014).
27. B. Maleki, N. Nasiri, R. Tayebee, A. Khojastehnezhad, and H. A.
Akhlaghi, RSC Adv. 6, 79128 (2016).
28. B. Maleki, M. Baghayeri, S. Ayazi Jannat Abadi, R. Tayebee, and
A. Khojastehnezhad, RSC Adv. 6, 96644 (2016).
29. B. Maleki, H. Eshghi, M. Barghamadi, N. Nasiri,
A. Khojastehnezhad, S. Sedigh Ashrafi, and O. Pourshiani, Res.
Chem. Intermed. 42, 3071 (2016).
3
3
3
3
3
3
0. S. Balalaie, Sh. Abdolmohammadi, H. R. Bijanzadeh, and A. M.
Amani, Mol. Divers. 12, 85 (2008).
1. M. Bararjanian, S. Balalaie, B. Movassagh, and A. M. Amani,
J. Iran. Chem. Soc. 6, 436 (2009).
2. N. Mobinikhaledi, M Foroughifar, and M. A. Bodaghi Fard, Synth.
React. Inorg. Metal-Org. Nano-Metal Chem. 40, 179 (2010).
3. Gh. M. Ziarani, S. Faramarzi, Sh. Asadi, A. Badiei, R. Bazl, and
M. Amanlou, DARU J. Pharm. Sci. 21, 3 (2013).
Acknowledgments: We are thankful to the Research
Council of the University of Guilan for the partial support
of this research.
4. B. Sadeghi, M. Bouslik, and M. R. Shishehbore, J. Iran. Chem. Soc.
12, 1801 (2015).
References and Notes
5. B. Sabour, M. H. Peyrovi, and M. Hajimohammadi, Res. Chem.
Intermed. 41, 1343 (2015).
1
2
3
. S. S. Park, M. S. Moorthy, and C. Ha, Korean J. Chem. Eng.
3
1, 1707 (2014).
. M. Sharifi, D. Wallacher, and M. Wark, Beilstein J. Nanotechnol.
, 428 (2012).
. C. W. Jones, K. Tsuji, and M. E. Davis, Nature 393, 52 (1998).
36. J. Albadi, A. Mansournezhad, and T. Sadeghi, Res. Chem. Intermed.
41, 8317 (2015).
37. N. Saadatjoo, M. Golshekan, S. Shariati, H. Kefayati, and P. Azizi,
J. Mol. Catal. Chem. 377, 173 (2013).
3
J. Nanosci. Nanotechnol. 19, 3447–3458, 2019
3457