Page 5 of 6
Please Gd roe en no tC ha ed mj u iss tt r my argins
Journal Name
COMMUNICATION
In summary, the results presented here describe a reusable
catalytic system based on an inexpensive and abundant firstrow
transition metal Ni, which is capable of very efficiently
Zhang, ChemSusChem 2016, 9, 156-171.
DOI: 10.1039/D0GC00763C
[
[
8] C. H. Bartholomew, R. J. Farrauto, Fundamentals of industrial
catalytic processes. John Wiley & Sons, 2011.
9] a) U. Omoruyi, S. Page, J. Hallett, P. W. Miller,
ChemSusChem 2016, 9, 2037 – 2047. b) L. Deng, J. Li, D. Lai,
Y. Fu, Q. Guo, Angew. Chem. Int. Ed. 2009, 48, 6529 – 6532;
c) F. M. A. Geilen, B. Engendahl, A. Harwardt, W. Marquardt,
J. Klankermayer, W. Leitner, Angew. Chem. Int. Ed. 2010, 49,
hydrogenating LA to GVL without solvent and additive, using H
2
as the reductant. These advantages give the Ni/phosphine, the
robust catalytic system, a strong industrial potential to apply in the
+
key step of biomass conversion. In addition, L-Ni -H species, the
5510 – 5514; d) C. A. M. R. van Slagmaat, M. A. F. Delgove, J.
key active intermediate indicated by DFT calculations and in-situ
APXPS, can have the catalytic activity equivalent to that of noble
metal catalyst by means of regulating steric and electronic effects
of the substituents on the ligand.
Stouten, L. Morick, Y. van der Meer, K. V. Bernaerts, S. M. A.
De Wildeman, Green Chem. 2020, 22, 2443 – 2458; e)W. Li, J.
Xie, H. Lin, Q. Zhou, Green Chem. 2012, 14, 2388 – 2390; f) J.
Deng, Y. Wang, T. Pan, Q. Xu, Q. Guo, Y. Fu,
ChemSusChem 2013, 6, 1163 – 1167.
[
10]a) M. Fu, R. Shang, Z. Huang, Y. Fu, Synlett 2014, 25, 2748 –
2752; b) N. Dai, R. Shang, M. Fu, Y. Fu, Chin. J. Chem. 2015,
33, 405 – 408; c) G. Metzker, A. C. B. Burtoloso, Chem.
Commun. 2015, 51, 14199 – 14202; d) Y. Yi, H. Liu, L. Xiao, B.
Wang, G. Song, ChemSusChem 2018, 11, 1474 – 1478; e) C.
A. M. R. van Slagmaat, S. M. A. D. Wildeman, Eur. J. Inorg.
Chem. 2018, 694 – 702; f) Z. Liu, Z. Yang, P. Wang, X. Yu, Y.
Wu, H. Wang, Z. Liu, ACS Sustainable Chem. Eng. 2019, 7,
ACKNOWLEDGMENT
This work was supported by the National Key R&D Program of
China (2018YFB1501604), the National Natural Science
Foundation of China (21875239) and the Fundamental Research
Funds for the Central Universities (WK3530000004). The authors
thank the Hefei Leaf Biotech Co., Ltd and Anhui Kemi Machinery
Technology Co., Ltd for free samples and equipment that
benefited our ability to conduct this study.
1
8236 – 18241.
11]a) S. Chakraborty, H. Guan, Dalton Trans. 2010, 39, 7427 –
436; b) K. M. Waldie, A. L. Ostericher, M. H. Reineke, A. F.
[
[
7
Conflicts of interest
Sasayama, C. P. Kubiak, ACS Catal. 2018, 8, 1313 – 1324.
12]X. Qi, Y. Fu, L. Liu, Q. Guo, Organometallics 2007, 26,
There are no conflicts to declare.
4197−4203.
[
[
13] K. Wu, A. G. Doyle, Nat. Chem. 2017, 9, 779 – 784.
14]
a) M. Kandiah, G. S. McGrady, A. Decken, P. Sirsch, Inorg.
Chem. 2005, 44, 8650 – 8652; b) J. Mautz, K. Heinze, H.
Wadepohl, G. Huttner, Eur. J. Inorg. Chem. 2008, 1413 –
1422.
Notes and references
[
1] a) A. Farrán, C. Cai, M. Sandoval, Y. Xu, J. Liu, M.J.Hernáiz,
R. J. Linhardt, Chem. Rev. 2015, 115, 6811 – 6853; b) L. T.
Mika, E. Cséfalvay, Á. Németh, Chem. Rev. 2018, 118, 505 – [15]Because
13; c) W. Leitner, J. Klankermayer, S. Pischinger, H. Pitsch,
K. Kohse-Höinghaus, Angew. Chem. Int. Ed. 2017, 56, 5412 –
452.
Ni(OAc) /triphos
and
Ni(OAc) /DPPP
are
2
2
6
paramagnetic, they are not suitable to test with in-situ nuclear
magnetic resonance (NMR) under hydrogen atmosphere to
directly prove the existence of hydride.
5
[
2] a) I. T. Horváth, H. Mehdi, V. Fábos, L. Boda, L. T. Mika, [16]S. A. Buckler, J. Am. Chem. Soc. 1962, 84, 3093 – 3097.
Green Chem. 2008, 10, 238 – 242; b) D. M. Alonso, S. G.
Wettstein, J. A. Dumesic, Green Chem. 2013, 15, 584 – 595;
c) L. Bui, H. Luo, W. R. Gunther, Y. Román-Leshkov, Angew.
Chem. Int. Ed. 2013, 52, 8022 – 8025; d) L. Yan, Q. Yao, Y.
Fu, Green Chem. 2017, 19, 5527 – 5547; e) Z. Yu, X. Lu, C.
Liu, Y. Han, N. Ji, Renew. Sustain. Energy Rev. 2019;112:140
–
157.
[
3] a) J. S. Luterbacher, J. M. Rand, D. M. Alonso, J. Han, J. T.
Youngquist, C. T. Maravelias, B. F. Pfleger, J. A. Dumesic,
Science 2014, 343, 277 – 280; b) E. I. Gürbüz, J. M. R. Gallo,
D. M. Alonso, S. G.Wettstein, W. Y. Lim, J. A. Dumesic,
Angew. Chem. Int. Ed. 2013, 52, 1270 – 1274; c) G.
Strappaveccia, L. Luciani, E. Bartollini, A. Marrocchi, F. Pizzo,
L. Vaccaro, Green Chem. 2015, 17, 1071 – 1076.
[
[
4] a) J.-P. Lange, J. Z. Vestering, R. J. Haan, Chem. Commun.
2007, 3488 – 3490; b) A. Marckwordt, F. E. Ouahabi, H.
Amani, S. Tin, N. V. Kalevaru, P. C. J. Kamer, S. Wohlrab, J.
G. de Vries, Angew. Chem. Int. Ed. 2019, 58, 3486 – 3490.
5] a) J.-P. Lange, R. Price, P. M. Ayoub, J. Louis, L. Petrus, L.
Clarke, H. Gosselink, Angew. Chem. Int. Ed. 2010, 49, 4479 –
4483; b) J. Q. Bond, D. M. Alonso, D. Wang, R. M. West, J. A.
Dumesic, Science 2010, 327, 1110 – 1114; c) R. Palkovits,
Angew. Chem. Int. Ed. 2010, 49, 4336 – 4338.
[
[
6] a) X. Du, L. He, S. Zhao, Y. Liu, Y. Cao, H. He, K. Fan, Angew.
Chem. Int. Ed. 2011, 50, 7815 – 7819; b) D. Lai, L. Deng, Q.
Guo, Y. Fu, Energy Environ. Sci. 2011, 4, 3552 – 3557; c) W.
Luo, M. Sankar, A. M. Beale, Q. He, C. J. Kiely, P. C.A.
Bruijnincx, B. M. Weckhuysen, Nat. Commun. 2015, 6: 6540.
7] a) W. R. H. Wright, R. Palkovits, ChemSusChem 2012, 5,
1657 – 1667; b)K. Yan, Y. Yang, J. Chai, Y. Lu, Appl. Catal. B:
Environ. 2015, 179, 292 – 304; c) F. Liguori, C. Moreno-
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins