Journal of the American Chemical Society
Page 8 of 10
1
2
1
Environment Using Cryoreduction” Inorg. Chem. 2013, 52,
7323−732.
Hu, L.; Chen, H. “Substrate-Dependent Two-State Reactivity
in Iron-Catalyzed Alkene [2+2] Cycloaddition Reactions” J. Am.
Chem. Soc. 2017, 139, 15564-15567.
Hedström, A.; Lindstedt, E.; Norrby, P.-O. “Ox the Oxidattion
State of Iron in Iron-Mediated C-C Couplings” J. Organomet. Chem.
2013, 748, 51-55.
3
4
5
6
7
8
9
26 Chiang, K. P.; Scarborough, C. C.; Horitani, M.; Lees, N. S.; Ding,
K.; Dugan, T. R.; Brennessel, W. W.; Bill, E.; Hoffman, B. M.;
Holland, P. L. “Characterization of the Fe-H bond in a Three-
Coordinate Terminal Hydride Complex of Iron(I)” Angew. Chem.
Int. Ed. 2012, 51, 3658–3662.
15
1
Fisher, M.T.; Sligar, S.G. “Control of Heme Protein Redox
27
Yu, Y.; Smith, J. M.; Flaschenriem, C. J.; Holland, P. L. “Binding
Potential and Reduction Rate: Linear Free Energy Relation
between Potential and Ferric Spin State Equilibrium” J. Am. Chem.
Soc. 1985, 107, 5018-5019.
Affinity of Alkynes and Alkenes to Low-Coordinate Iron” Inorg.
Chem. 2006, 45, 5742−5751.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
2
1
Ye, S.; Bill, E.; Neese, F. “Electronic Structures of the
(a) Turner, J.W.; Schultz, F.A. “Coupled Electron-Transfer and
[Fe(N2)(SiPiPr3)]+1/0/–1
Electron
Transfer
Series:
A
Spin-Exchange Reactions” Coord. Chem. Rev. 2001, 219-221, 81-
97; (b) Schultz, F.A. “Structure-Reactivity Relationships in
Inorganic Electrochemistry” J. Solid State Electrochem. 2011, 15,
1833-1843.
Hickey, A. K.; Lee, W.-T.; Chen, C.-H.; Pink, M.; Smith, J. M. “A
Bidentate Ligand Stabilizes a Low-Coordinate Iron(0) Carbonyl
Counterintuitive Correlation between Isomer Shifts and Oxidation
States” Inorg. Chem. 2016, 55, 3468-3474
29
The trans:cis ratio was determined from the integrations of
the 13C resonances at the olefin chemical shifts for cis- and trans-
2-hexene. See SI for details.
1
Phua, P.-H.; Lefort, L.; Boogers, J.A.F.; Tristany, M.; de Vries,
J.G. “Soluble Iron Nanoparticles as Cheap and Environmentally
Benign Alene and Alkyne Hydrogenation Catalysts” Chem.
Commun. 2009, 3747-3749.
Complex” Organometallics 2016, 35, 3069−3073.
1
For example: (a) Fernández, I.; Trovitch, R. J.; Lobkovsky, E.;
Chirik, P. J. “Synthesis of Bis(imino)pyridine Iron Di- and
Monoalkyl Complexes: Stability Differences between FeCH2SiMe3
and FeCH2CMe3 Derivatives” Organometallics, 2008, 27, 109-118;
(b) Vela, J.; Cirera, J.; Smith, J. M.; Lachicotte, R. J.; Flaschenriem, C.
J.; Alvarez, S.; Holland, P. L. “Quantitative Geometric Descriptions
of the Belt Iron Atoms of the Iron−Molybdenum Cofactor of
Nitrogenase and Synthetic Iron(II) Model Complexes” Inorg.
Chem. 2007, 46, 60-71.
1
(a) Mørup, S.; Linderoth, S.; Jacobsen, J.; Holmblad, M.
“Temperature Dependence of the Magnetic Hyperfine Splitting of
Metastable Iron-Amalgam” Hyperfine Int. 1991, 69, 489-492; (b)
Linderoth, S.; Mørup, S. “Stability and Magnetic Properties of an
Iron-Mercury Alloy” J. Phys.: Condens. Matter 1992, 4, 8627-8634.
2
Sirokman, G.; Molnar, A.; Bartok, M., Journal of Labelled
2
Compounds and Radiopharmaceuticals, 1989, 27, 439-448
(a) Schroeder, M.A.; Wrighton, M.A. “Pentacarbonyliron(0)
Photocatalyzed Hydrogenation and Isomerization of Olefins” J.
Am. Chem. Soc. 1976, 98, 551-558; (b) Mitchener, J.C.; Wrighton,
M.A. “Photogeneration of Very Active Homogeneous Catalysts
Using Laser Light Excitation of Iron Carbonyl Precursors” J. Am.
Chem. Soc. 1981, 103, 975-977; (c) Perthuisot, C.; Jones, W.D. “C-H
(a) Andres, H.; Bominaar, E. L.; Smith, J. M.; Eckert, N. A.;
Holland, P. L.; Münck, E. “Planar Three-Coordinate High-Spin FeII
Complexes with Large Orbital Angular Momentum:ꢀ Mössbauer,
Electron Paramagnetic Resonance, and Electronic Structure
Studies” J. Am. Chem. Soc. 2002, 124, 3012-3025; (b) Cowley, R. E.;
Bill, E.; Neese, F.; Brennessel, W. W.; Holland, P. L. “Iron(II)
Complexes with Redox-Active Tetrazene (RNNNNR) Ligands”
Inorg. Chem. 2009, 48, 4828-4836; (c) Dugan, T. R.; Bill, E.;
MacLeod, K. C.; Brennessel, W. W.; Holland, P. L. “Synthesis,
Spectroscopy, and Hydrogen/Deuterium Exchange in High-Spin
Iron(II) Hydride Complexes” Inorg. Chem. 2014, 53, 2370-2380.
Activation of Olefins with
a Zerovalent Iron Complex –
Isomerization of 4-Phenyl-1-butene to 1-Phenyl-1-butene using
Fe(depe)2N2” New J. Chem. 1994, 18, 621-628; (d) Glascoe, E.A;
Sawyer, K.R.; Shanoski, J.E.; Harris, C.B. “The Influence of the
Metal Spin State in the Iron-Catalyzed Alkene Isomerization
Reaction Studied with Ultrafast Infrared Spectroscopy” J. Phys.
Chem. C 2007, 111, 8789-8795; (e) Sawyer, K.R.; Glascoe, E.A.;
Cahoon, J.F.; Schlegel, J.P.; Harris, C.B. “Mechanism for Iron-
Catalyzed Alkene Isomerization in Solution” Organometallics
2008, 27, 4370-4379; (f) Fürstener, A.; Majima, K.; Martín, R.;
Krause, H.; Kattnig, E.; Goddard, R.; Lehmann, C.W. “A Cheap Metal
for a “Noble” Task: Preparative and Mechanistic Aspects of
Cycloisomerization and Cycloaddition Reactions Catalyzed by
Low-Valent Iron Complexes” J. Am. Chem. Soc. 2008, 130, 1992-
2004; (g) Mayer, M.; Welther, A.; Jacobi von Wangelin, A.; “Iron-
Catalyzed Isomerizations of Olefins” ChemCatChem 2011, 3, 1567-
1571; (h) Russell, S.K.; Lobkovsky, E.; Chirik, P.J. “Iron-Catalyzed
Intermolecular [2 + 2] Cycloaddition” J. Am. Chem. Soc. 2011,
133, 8858-8861; (i) Liu, X.; Li, B.; Liu, Q. “Base-Metal-Catalyzed
Olefin Isomerization Reactions” Synthesis 2019, 51, 1293-1310
34 See SI for full details.
21
Liu, Y.; Wang, L.; Deng, L. “Three-Coordinate Iron(II)
Dialkenyl Compound with NHC Ligation: Synthesis, Structure, and
Reactivity” Organometallics 2015, 34, 4401-4407
22
In
the
absence
of
cryptand,
the
complex
formed,
t
{[K][Ph2B(tBuIm)2FeCH2 Bu(N2)]}2(THF)4
is
demonstrating that cryptand is not essential for N2 coordination
(NN = 1877 cm-1, KBr). However, since this complex can only be
isolated in only poor yield, complex 2 is more practical for use in
catalysis.
2
(a) Tondreau, A. M.; Milsmann, C.; Patrick, A. D.; Hoyt, H. M.;
Lobkovsky, E.; Wieghardt, K.; Chirik, P. J. “Synthesis and Electronic
Structure of Cationic, Neutral, and Anionic Bis(imino)pyridine
Iron Alkyl Complexes: Evaluation of Redox Activity in Single-
Component Ethylene Polymerization Catalysts” J. Am. Chem. Soc.
2010, 132, 15046−15059; (b) Kuriyama, S.; Arashiba, K.;
Nakajima, K.; Matsuo, Y.; Tanaka, H.; Ishii, K.; Yoshizawa, K.;
Nishibayashi, Y. “Catalytic Transformation of Dinitrogen into
Ammonia and Hydrazine by Iron-Dinitrogen Complexes Bearing
Pincer Ligand” Nat. Commun. 2016, 22, 12181; (c) Ouyang, Z.;
Cheng, J.; Li, L.; Bao, X.; Deng, L. “High-Spin Iron(I) and Iron(0)
Dinitrogen Complexes Supported by N-Heterocyclic Carbene
Ligands” Chem. Eur. J. 2016, 22, 14162 – 14165; (d) Fan, Y.; Chen,
J.; Gao, Y.; Min, S.; Deng, L. “Iron Dinitrogen Complexes Supported
by Tris(NHC)borate Ligand: Synthesis, Characterization, and
Reactivity Study” Acta Chim. Sinica 2018, 76, 445-452.
5
Selected examples: (a) Keogh, D.W.; Poli, R. “Spin State
Change in Organometallic Reactions. Experimental and MP2
Theoretical Studies of the Thermodynamics and Kinetics of the CO
and N2 Addition to Spin Triplet Cp*MoCl(PMe3)2” J. Am. Chem. Soc.
1997, 119, 2516-2523; (b) Carreón-Macedo, J.-L.; Harvey, J.N. “Do
Spin State Changes Matter in Organometallic Chemistry?
A
Computational Study” J. Am. Chem. Soc. 2004, 126, 5789-5797; (c)
Hardman, N.J.; Fang, X.; Scott, B.L.; Wright, R.J.; Martin, R.L.; Kubas,
G.J. “High-Spin Diimine Complexes of Iron(II) Reject Binding of
Carbon Monoxide: Theoretical Analysis of Thermodynamic
Factors Inhibiting or Favoring Spin-Crossover” Inorg. Chem. 2005,
44, 8306-8316; (d) Benito-Garagorri, D.; Gonçalo Alves, L.; Verios,
2
Blume, M. “Magnetic Relaxation and Asymmetric Quadrupole
Doublets in the Mössbauer Effect” Phys. Rev. Lett. 1965, 14, 96-98.
Davydov, R. M.; McLaughlin, M. P.; Bill, E.; Hoffman, B. M.;
Holland, P. L. “Generation of High-Spin Iron(I) in a Protein
25
ACS Paragon Plus Environment